

Differentiation Collated Past Papers – Parametric Equations

2022 Question 1d.

(d)	$\frac{dx}{dx} = 3$	Correct expression	Correct solution	
	d <i>t</i>	for $\frac{dy}{dx}$.	with correct $\frac{dy}{dx}$.	
	$\frac{dy}{dx} = 3 - \frac{3}{2}$	dx	dx	
	dt 3t-1			
	$=\frac{3(3t-1)-3}{3t-1}$			
	$=\frac{9t-6}{3t-1}$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{9t - 6}{3t - 1} \times \frac{1}{3}$			
	$=\frac{3t-2}{}$			
	$=\frac{3t-1}{3t-1}$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}$			
	$\frac{3t - 2}{3t - 1} = \frac{1}{2}$			
	6t - 4 = 3t - 1			
	3t = 3			
	t = 1			
	$x = 5$ $y = 3 - \ln 2$ or 2.307			

2021 Question 1d.

$\frac{1}{dx} = \frac{1}{7}$	(d)	$x = t^{2} + 3t$ $\frac{dx}{dt} = 2t + 3$ $y = t^{2} \ln(2t - 3)$ $\frac{dy}{dt} = 2t \ln(2t - 3) + \frac{2t^{2}}{2t - 3}$ $\frac{dy}{dx} = \frac{2t \ln(2t - 3) + \frac{2t^{2}}{2t - 3}}{2t + 3}$ At $(10,0): t^{2} + 3t = 10$ $t^{2} + 3t - 10 = 0$ $(t + 5)(t - 2) = 0$ $t = -5 \text{ or } t = 2$ Since $t > \frac{3}{2}, t = 2$ $\frac{dy}{dx} = \frac{4 \ln(1) + 8}{7}$ $\frac{dy}{dx} = \frac{8}{7}$	$\frac{dy}{dt}$ correct.	$\frac{dy}{dt} \text{ correct}$ And $t^2 + 3t = 10$ solved to find $t = -5 \text{ or } t = 2$	T1: Correct solution with correct $\frac{dy}{dx}$.
------------------------------	-----	---	--------------------------	---	---

2020 Question 2e.

(e) $\frac{dx}{dt} = \frac{1}{t} \frac{dy}{dt} = 18t^2$ $\frac{dy}{dx} = 18t^3$ $\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx}$ $= 54t^2 \times t$ $= 54t^3$ $54t^3 = 2$ $t^3 = \frac{1}{27}$ $t = \frac{1}{3}$ $x = \ln\left(\frac{1}{3}\right)$ $y = 6\left(\frac{1}{3}\right)^3$ $= \frac{2}{9}$ $P \text{ is } \left(\ln\left(\frac{1}{3}\right), \frac{2}{9}\right)$	Correct expression for $\frac{dy}{dx}$.	Correct expression for $\frac{d^2y}{dx^2}$.	Correct solution with correct derivatives. Accept (-1.1, 0.22).
--	--	--	--

2019 Question 2c.

(c)	$x = \frac{1}{(5-t)^2} = (5-t)^{-2}$ $\frac{dx}{dt} = -2(5-t)^{-3} \times -1$ $= \frac{2}{(5-t)^3}$ $\frac{dy}{dt} = 5 - 2t$ $\frac{dy}{dx} = \frac{(5-2t)(5-t)^3}{2}$ At $t = 2$, $\frac{dy}{dx} = \frac{1 \times 3^3}{2} = 13.5$	Correct expression for $\frac{dx}{dt}$.	Correct solution with correct derivatives shown.	

2019 Question 2e.

(e)	LHS	Correct expression	Correct	Complete proof.
	$y = e^{\sin 2x}$	for $\frac{dy}{dx}$ or $\frac{du}{dx}$.	expressions for	Accept in terms of
	dy _sin2x > 2 2	dx dx	$\frac{d^2y}{dx^2}$ in any	x, y, and u .
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{\sin 2x} \times 2\cos 2x$		u.	
	$\frac{d^2y}{dx^2} = e^{\sin 2x} \times (-4\sin 2x) + e^{\sin 2x} \times (2\cos 2x)^2$		equivalent form.	
	$\frac{dx^2}{dx^2} = e^{-xx} \times (-4\sin 2x) + e^{-xx} \times (2\cos 2x)$		Or correct RHS.	
	$u = \sin 2x$			
	$\frac{du}{dx} = 2\cos 2x$			
	$\frac{1}{dx} = 2\cos 2x$			
	$\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} = -4\sin 2x$			
	dx^2			
	$y = e^u$			
	$\frac{dy}{du} = e^u$			
	du du			
	$\frac{d^2y}{du^2} = e^u$			
	RHS			
	$\left \frac{d^2 y}{du^2} \times \left(\frac{du}{dx} \right)^2 + \frac{dy}{du} \times \frac{d^2 u}{dx^2} \right $			
	$\frac{1}{du^2} \times \frac{1}{dx} + \frac{1}{du} \times \frac{1}{dx^2}$			
	$= e^{u} \times (2\cos 2x)^{2} + e^{u} \times (-4\sin 2x)$			
	$= e^{\sin x} \times (2\cos 2x)^2 + e^{\sin x} \times (-4\sin 2x)$			
	Therefore LHS = RHS as required.			
	$d^2y = \sin 2x \left(-\frac{2}{3} \cos 2x \right)$			
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4\mathrm{e}^{\sin 2x} \left(\cos^2 2x - \sin 2x\right)$			

2018 Question 1e.

(e)	$\frac{dx}{dt} = 3t^2 \frac{dy}{dt} = 2t$ $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = 2t \cdot \frac{1}{3t^2} = \frac{2}{3t}$	Correct dy/dx	Correct $\frac{d^2y}{dx^2}$	Correct solution with correct derivatives.
	$\frac{d^2y}{dt^2} = \frac{d\left(\frac{dy}{dx}\right)}{dt} \times \frac{dt}{dx}$			
	$\begin{vmatrix} \frac{dx^2}{dx^2} & \frac{dt}{dt} & \frac{dt}{dt} \\ = \frac{-2}{3t^2} \times \frac{1}{3t^2} = \frac{-2}{9t^4} \\ \frac{\frac{d^2y}{dx^2}}{\left(\frac{dy}{dx}\right)^4} = \frac{\frac{-2}{9t^4}}{\left(\frac{2}{3t}\right)^4}$			
	$= \frac{-2}{9t^4} \times \frac{81t^4}{16}$ $= \frac{-9}{8} \text{ or } -1.125$			

2018 Question 3b.

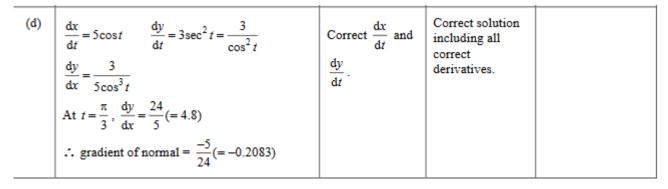
<u>d;</u> d. d.		Correct solution with correct derivatives.		
-----------------------	--	--	--	--

2017 Question 1d.

	$\frac{dx}{dt} = \frac{1}{2}(t+1)^{\frac{-1}{2}} = \frac{1}{2\sqrt{t+1}}$ $\frac{dy}{dt} = 2\cos 2t$ $\frac{dy}{dx} = 2\cos 2t \cdot 2\sqrt{t+1}$ $= 4\cos 2t \cdot \sqrt{t+1}$ At $t = 0$ $\frac{dy}{dx} = 4\cos 0 \times \sqrt{1}$ $= 4$	$\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct.	Correct solution with correct derivatives.		
--	--	---	--	--	--

2016 Question 1c.

$\frac{dx}{dt} = -4\sin 2t$ $\frac{dy}{dt} = 2\tan t \sec^2 t$ $\frac{dy}{dx} = \frac{2\tan t \sec^2 t}{-4\sin 2t}$ $= \frac{2\tan t}{-4\sin 2t \cos^2 t}$	Correct $\frac{dx}{dt}$ or $\frac{dy}{dt}$	Correct solution with correct derivatives.	
At $t = \frac{\pi}{4}$, $\frac{dy}{dx} = \frac{2}{-4 \times \left(\frac{1}{\sqrt{2}}\right)^2}$ $= \frac{2}{-2} = -1$			


2015 Question 3c.

(c)	$\frac{dx}{dt} = -3\sin t$ $\frac{dy}{dt} = 3\cos 3t$ $\frac{dy}{dx} = \frac{3\cos 3t}{-3\sin t} = \frac{-\cos 3t}{\sin t}$ At $t = \frac{\pi}{4}$, $\frac{dy}{dx} = \frac{-\cos\left(\frac{3\pi}{4}\right)}{\sin\left(\frac{\pi}{4}\right)} = 1$ $\therefore \text{ Gradient of normal} = -1$	Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	Correct solution with correct derivatives.	

2014 Question 1c.

(c) $x = 2\sin t$ $y = \cos 2t$					
	(c)	$\frac{dx}{dt} = 2\cos t \frac{dy}{dt} = -2\sin 2t$ $\frac{dy}{dx} = \frac{-2\sin 2t}{2\cos t}$ $= \frac{-2 \times 2\sin t\cos t}{2\cos t}$	expressions for	ı	

2013 Question 1d.

2013 Question 3d.

(d)	For the curve, $\frac{dy}{dx} = \frac{3t^2 - 3}{2t - 1}$ Normal parallel to the y-axis means tangent parallel to the x-axis. $\Rightarrow \frac{dy}{dx} = 0$ $3t^2 = 3$ $t = \pm 1$ $t = 1 \Rightarrow \text{point } (0,-2)$ $t = -1 \Rightarrow \text{point } (2,2)$	Correct expression for $\frac{dy}{dx}$	Correct solution with correct derivative.	

