

Differentiation Collated Past Papers - Extrema

2023 Question 1e.

		. Constanting	Cont	T1
(e)	Area of triangle = $\frac{1}{2}xy$	 Correct derivative. 	 Correct derivative. 	T1
	2		AND	Maximum area,
	$A = \frac{1}{2}x \left(x(x-2m)^2\right)$		x = m found.	$A = \frac{1}{2}m^4 \text{ found}$
	$=\frac{1}{2}x^{2}(x-2m)^{2}$			with correct $\frac{dA}{dx}$.
	dA 1 2 (2) 2 3 4 (2 3)			OR
	$\frac{dA}{dx} = \frac{1}{2}x^2(2(x-2m)) + (x-2m)^2$			Correct solution but with one
	$=x^{2}(x-2m)+x(x-2m)^{2}$			minor error.
	$=x(x-2m)\big(x+(x-2m)\big)$			
	= x(x-2m)(2x-2m)			T2
	= 2x(x-2m)(x-m)			Correct solution
	OR			with correct $\frac{dA}{dx}$
	$A = \frac{1}{2}x^{2}(x - 2m)^{2}$			showing the
	1 4 2 3 2 2 2			calculation of the
	$=\frac{1}{2}x^4 - 2mx^3 + 2m^2x^2$			correct proportion of total shaded
	$\frac{\mathrm{d}A}{\mathrm{d}x} = 2x^3 - 6mx^2 + 4m^2x$			area
	$=2x\left(x^2-3mx+2m^2\right)$			
	= 2x(x-2m)(x-m)			
	$\frac{\mathrm{d}A}{\mathrm{d}x} = 0 \Longrightarrow 2x(x-2m)(x-m) = 0$			
	x = 0 or $x = 2m$ or $x = m$			
	Since $0 < x < 2m$			
	the area is a maximum when $x = m$			
	Maximum area of triangle:			
	$A(m) = \frac{1}{2}m^{2}(m-2m)^{2}$			
	$=\frac{1}{2}m^4$			
	This is $\frac{3}{8}$ of the total shaded area since			
	$\frac{3}{8} \times \frac{4m^3}{3} = \frac{1}{2}m^4$			
	o			

2023 Question 2d.

(d)	$f'(x) = 3x^2 \cdot \frac{1}{x} + \ln x \cdot (6x)$ $= 3x + 6x \ln x$ $f''(x) = 3 + 6x \cdot \frac{1}{x} + \ln x(6)$	• Correct <i>f</i> '(<i>x</i>).	 Correct f''(x). AND Correct f''(x). AND 	
	x $= 9 + 6 \ln x$ $f''(x) = 0 \Rightarrow 9 + 6 \ln x = 0$ $\ln x = -1.5$ $x = e^{-1.5} \text{ or } x = 0.223$		Correct x-value.	

2023 Question 3d.

(d)	$f(x) = x^{-1} - 2x^{-3}$ $f'(x) = -x^{-2} + 6x^{-4} = 0$ $\frac{6}{x^4} = \frac{1}{x^2}$ $6x^2 - x^4 = 0$ $x^2(6 - x^2) = 0$ $x \neq 0 \text{ so } x = \pm \sqrt{6}$ $f''(x) = 2x^{-3} - 24x^{-5}$ $f''(\sqrt{6}) = -0.136 < 0 \text{ i.e. maximum}$ $f''(-\sqrt{6}) = 0.136 > 0 \text{ i.e. minimum}$ Maximum at $\left(\sqrt{6}, \frac{\sqrt{6}}{9}\right) = (2.45, 0.2722)$ Minimum at $\left(-\sqrt{6}, \frac{-\sqrt{6}}{9}\right) = (-2.45, -0.2722)$	 Correct values of x found, with evidence of derivative. 	 Co-ordinates and nature of the two turning points found and distinguished, with evidence of a calculus method. 	
-----	---	---	--	--

(d)	$f(x) = x^{-1} - 2x^{-3}$ $f'(x) = -x^{-2} + 6x^{-4}$ $= \frac{-1}{x^2} + \frac{6}{x^4}$ $f'(x) = 0 \Longrightarrow \frac{-1}{x^2} + \frac{6}{x^4} = 0$ $x^4 - 6x^2) = 0$ $x^2(x^2 - 6) = 0$ x = 0 not possible $x^2 - 6 = 0$ $x = \pm\sqrt{6} \text{ or } x = \pm 2.45$ Second derivative test : $f''(x) = 2x^{-3} - 24x^{-5}$ $= \frac{2}{x^3} - \frac{24}{x^5}$ $f''(\sqrt{6}) = -0.136 = -\frac{\sqrt{6}}{18}$ Since $f''(\sqrt{6}) < 0, x = \sqrt{6}$ is a local maximum. $f''(\sqrt{6}) = -0.136 = -\frac{\sqrt{6}}{18}$ Since $f''(\sqrt{6}) > 0, x = -\sqrt{6}$ is a local minimum. Maximum turning point when $x = \sqrt{6}$. Minimum turning point when $x = -\sqrt{6}$.	 Correct derivative. AND Correct two values of x found (not x = 0). 	• x-coordinates of both stationary points found. AND The nature of the two turning points found with a correct first or second derivative test. Not required: $f(\sqrt{6}) = \frac{\sqrt{6}}{9}$ = 0.272 $f(-\sqrt{6}) = \frac{\sqrt{6}}{9}$ = -0.272	
-----	--	--	---	--

2022 Question 1b.

$f(x) = \frac{x^2 + 1}{x}$	Correct solution with correct derivative	
$f'(x) = \frac{x^2 + 1}{x}$ $f'(x) = \frac{x \cdot (2x) - (x^2 + 1)}{x^2}$ $\frac{x \cdot (2x) - (x^2 + 1)}{x^2} = 0$	Must have both solutions: $x = \pm 1$	
$\frac{x \cdot (2x) - (x^2 + 1)}{x^2} = 0$		
$2x^2 - x^2 - 1 = 0$		
$x^2 = 1$		
$x = \pm 1$		
OR.		
$f(x) = x + x^{-1}$ $f'(x) = 1 - x^{-2}$		
$f'(x) = 1 - x^{-2}$		
$1 - \frac{1}{x^2} = 0$		
$x^2 - 1 = 0$		
$x = \pm 1$		

(e)
$$y = e^{x^2}$$

 $\frac{dy}{dx} = 2pxe^{x^2}$
 $\frac{dy}{dx} = 2pxe^{x^2} + 2pxe^{x^2} + 2px^{x^2}$
 $= 2pe^{x^2}(2px^2 + 1)$
At a point of inflection $\frac{d^2y}{dx^2} = 0$
 $2pe^{x^2}(2px^2 + 1) = 0$
Equation 1
 $2pe^{x^2} = 0$
 $pe^{x^2} = 0$ for all values of x
since $e^{x^2} > 0$ for all values of x
since $e^{x^2} > 0$ for all values of x
since $e^{x^2} > 0$ for all values of x
since $e^{x^2} > 0$ for all values of x
since $e^{x^2} > 0$ for all values of z
since $e^{x^2} > 0$ for all values of z
since $e^{x^2} > 0$ for all values of z
since $e^{x^2} > 0$ for all values of z
since $e^{x^2} > 0$ for all values of z
since $e^{x^2} > 0$ for all values of z
since $e^{x^2} > 0$ for all values of z
since $e^{x^2} > 0$ for all values of z
since $e^{x^2} > 0$ for all values of z
since $e^{x^2} > 0$ for all values of z
since $e^{x^2} > 0$ for all values of z
since $e^{x^2} > 0$ for all values of z
since $e^{x^2} > 0$ for all values of z
 $x^2 = \frac{1}{2p}$
 $2px^2 + 1 = 0$ has no real solutions because p
is a positive real constant, $\frac{-1}{2p}$ is negative
and there is not a real solutions because the
discriminant is less than zero.
 $b^2 - 4ac = 0 - 4(2p)(1) = -5p$
Since p is a positive real constant.
Therefore, there are no solutions $\frac{d^2}{dx^2} = 0$ and

2022 Question 2c.

(c)	$d(t) = \frac{t^2 - 6}{2t^3}$ $v(t) = \frac{2t^3(2t) - (t^2 - 6)(6t^2)}{4t^6}$ $v(t) = \frac{36t^2 - 2t^4}{4t^6}$	Correct derivative.	Correct solution with correct derivative.	
	$v(t) = \frac{18 - t^2}{2t^4}$			
	Stationary point when $v(t) = 0$			
	$18 - t^2 = 0$			
	$t = \sqrt{18} \ (= 4.24)$			

2022 Question 2d.

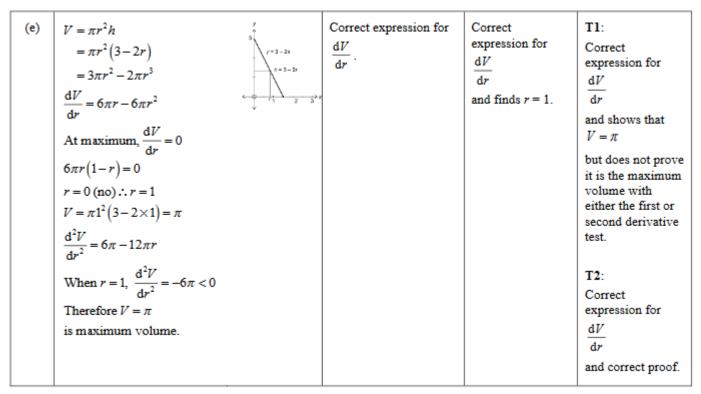
(d)	$y = 6e^{1-0.5x}$ Area = $6xe^{1-0.5x}$ $A'(x) = 6e^{1-0.5x} + 6xe^{1-0.5x} \times -0.5$ = $6e^{1-0.5x} - 3xe^{1-0.5x}$ = $3e^{1-0.5x}(2-x)$ At maximum, $A'(x) = 0$ x = 2 Area = $12e^{1-1} = 12$	Correct derivative of <i>A</i> (<i>x</i>).	Correct solution with correct derivative.	
-----	---	---	---	--

2022 Question 3d.

(d) $y = 9x - 2 + \frac{3}{3x - 1}$ $\frac{dy}{dx} = 9 - 3(3x - 1)^{-2} \times 3$ $= 9 - \frac{9}{(3x - 1)^2}$ Stationary point $\frac{dy}{dx} = 0$ $9 - \frac{9}{(3x - 1)^2} = 0$ $9 = \frac{9}{(3x - 1)^2}$ $(3x - 1)^2 = 1$ $3x - 1 = \pm 1$ $x = \frac{1 \pm 1}{3}$ $x = 0 \text{ or } x = \frac{2}{3}$ $\frac{d^2y}{dx^2} = \frac{54}{(3x - 1)^3}$ $x = 0 \frac{d^2y}{dx^2} = \frac{54}{(-1)^3} < 0$ Local max at $x = 0$ $x = \frac{2}{3} \qquad \frac{d^2y}{dx^2} = \frac{54}{(1)^3} > 0$ Local min at $x = \frac{2}{3}$	Correct solution with correct derivative. The nature of each turning point stated but not determined using a calculus method.	T1 Correct solution with correct derivative. The nature of each turning point determined with a first or second derivative test.
--	--	--

Total time = time (HP) + time (PS) T1 Method A (e) Correct $\frac{dT}{dr}$. Method A x = 1.5 found with correct derivative Let x = distance PQ $T = \frac{4-x}{10} + \frac{\sqrt{x^2+4}}{6}$ OR $\frac{\mathrm{d}T}{\mathrm{d}x} = \frac{-1}{10} + \frac{\frac{1}{2}(x^2 + 4)^{\frac{-1}{2}}.2x}{6}$ T1 Method B x = 2.5 or 5.5found (5.5 not discarded) with $\frac{dT}{dx} = \frac{-1}{10} + \frac{x}{6\sqrt{x^2 + 4}}$ correct derivative. For maximum/minimum time, $\frac{dT}{dr} = 0$ T2 Correct solution $\frac{1}{10} = \frac{x}{6\sqrt{x^2 + 4}}$ with correct derivative. $6\sqrt{x^2+4} = 10x$ $\sqrt{x^2+4} = \frac{10}{6}x$ $x^2 + 4 = \frac{25}{9}x^2$ $4 = \frac{16}{9}x^2$ $\frac{36}{16} = x^2$ x = 1.54 - 1.5 = 2.5Megan should travel 2.5 km along the path before cutting across the park. Method B Let x = distance HP $T = \frac{x}{10} + \frac{\sqrt{((4-x)^2 + 4)}}{c}$ $\frac{dT}{dx} = \frac{1}{10} + \frac{(x-4)}{6\sqrt{x^2 - 8x + 20}}$ $\frac{\mathrm{d}T}{\mathrm{d}x} = 0$ $\frac{1}{10} + \frac{(x-4)}{6\sqrt{x^2 - 8x + 20}} = 0$ $5(x-4) = -3\sqrt{x^2 - 8x + 20}$ $25(x^2-8x+16)=9(x^2-8x+20)$ $25x^2 - 200x + 400 = 9x^2 - 72x + 180$ $16x^2 - 128x + 220 = 0$ x = 2.5 or 5.5Since x < 4, x = 2.5 km

2021 Question 1e.



2021 Question 2b.

(b)	$\frac{dy}{dx} = \frac{(x+1)2x - x^2}{(x+1)^2}$	Correct solutions with correct derivative.	
	$=\frac{x^2+2x}{\left(x+1\right)^2}$		
	$\frac{dy}{dx} = 0 \Longrightarrow x(x+2) = 0$ x = 0 or x = -2		

2021 Question 3c.

(c)	$\frac{dy}{dx} = \frac{\left(x^2 + 4\right) - x(2x)}{\left(x^2 + 4\right)^2} = \frac{4 - x^2}{\left(x^2 + 4\right)^2}$	Correct $\frac{dy}{dx}$	Correct $\frac{dy}{dx}$ and identifies -2 and 2 as the	T1: Correct solution with correct derivative.	
	Increasing when $\frac{dy}{dx} > 0$ $\frac{4-x^2}{(x^2+4)^2} > 0$ $4-x^2 > 0$ -2 < x < 2				

(e)	$\cos\theta = \frac{h}{S}$ $S^{2} = h^{2} + r^{2}$ $S = \sqrt{h^{2} + r^{2}}$	$\begin{array}{c} \text{Correct} \\ \text{expression for} \\ \frac{\text{d}I}{\text{d}h} \end{array}$	T2: Correct proof with correct derivative
	k and r are constant $I = \frac{k \cos \theta}{S^2}$		
	$I = \frac{k \frac{h}{S}}{S^2}$		
	$=\frac{kh}{S^3}$ $I = \frac{kh}{\left(h^2 + r^2\right)^{\frac{3}{2}}}$		
	$\frac{(h^2 + r^2)^2}{dh} = \frac{(h^2 + r^2)^{\frac{3}{2}}k - kh\left(\frac{3}{2}\right)(h^2 + r^2)^{\frac{1}{2}}(2h)}{(h^2 + r^2)^3}$		
	$\frac{dI}{dh} = \frac{\left(h^2 + r^2\right)^3}{\left(h^2 + r^2\right)^{\frac{3}{2}} - 3kh^2\left(h^2 + r^2\right)^{\frac{1}{2}}}{\left(h^2 + r^2\right)^3}$		
	$\frac{dh}{dh} = \frac{(h^2 + r^2)^3}{(h^2 + r^2)^2 (h^2 + r^2 - 3h^2)}$ $\frac{dI}{dh} = \frac{k(h^2 + r^2)^2 (h^2 + r^2 - 3h^2)}{(h^2 + r^2)^3}$		
	$\frac{dh}{dh} = \frac{(h^2 + r^2)^3}{(h^2 + r^2)^{\frac{5}{2}}}$		
	$\frac{dh}{(h^2 + r^2)^{\frac{1}{2}}}$ $\frac{dI}{dh} = 0 \Longrightarrow k(r^2 - 2h^2) = 0$		
	$2h^2 = r^2$ $h^2 = \frac{r^2}{2}$		
	$h = \frac{r}{\sqrt{2}}$		

2020 Question 1c.

$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\left(1 + \ln x\right) \cdot 1 - x \cdot \frac{1}{x}}{\left(1 + \ln x\right)^2}$	Correct derivative.	Correct solution with correct derivative.	
$=\frac{\ln x}{\left(1+\ln x\right)^2}$			
$\frac{dy}{dx} = 0 \Longrightarrow \ln x = 0$ $x = 1$			

(e)	$r^2 + \left(\frac{h}{2}\right)^2 = 400$	Correct expression for $\frac{dV}{dh}$ or $\frac{dV}{dr}$	Correct value of r or h with correct derivatives.	Correct solution with correct derivatives.
	$r^{2} = 400 - \frac{\pi}{4}$ $V_{cyl} = \pi r^{2} h$	<u>h</u> 2	Units not required.	Units not required.
	$= \pi \left(400 - \frac{h^2}{4} \right) h$ $= \pi \left(400 h - \frac{h^3}{4} \right)$			
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \pi \left(400 - \frac{3h^2}{4} \right)$			
	$\frac{dV}{dh} = 0 \Rightarrow 400 - \frac{3h^2}{4} = 0$ $h = \sqrt{\frac{1600}{3}} = \frac{40}{\sqrt{3}} = 23.1 \mathrm{cm}$			
	$r = 16.3 \text{ cm}$ $V = \pi \times 16.3^2 \times 23.1$			
	= 19 300 cm ³ $V = 19 347 \text{ cm}^3$			

2020 Question 2c.

.

(c)	$f'(x) = (2x-3)2xe^{x^2+k} + 2e^{x^2+k}$ = $e^{x^2+k}((2x-3)2x+2)$ = $e^{x^2+k}(4x^2-6x+2)$ = $2e^{x^2+k}(2x^2-3x+1)$ $f''(x) = 0 \Rightarrow 2e^{x^2+k} = 0 \text{ or } 2x^2-3x+1=0$ $2e^{x^2+k}$ has no solutions since $2e^{x^2+k}$ is always positive. $2x^2-3x+1=0$ (2x-1)(x-1)=0 $x = \frac{1}{2} \text{ or } x = 1$	Correct derivative.	Correct solution with correct derivative. Reference to $2e^{x^2+k} = 0$ is not required	
	$x = \frac{1}{2} \text{ or } x = 1$			

2020 Question 3d.

(d)	$y = (x-3)^{-1} + x$ $\frac{dy}{dx} = -1(x-3)^{-2} + 1$ $= \frac{-1}{(x-3)^2} + 1$	Correct expression for $\frac{dy}{dx}$.	Correct expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$	Correct solution with correct derivatives.
	$= \frac{-1}{(x-3)^2} + 1$ $\frac{dy}{dx} = 0 \Rightarrow x-3 = \pm 1$ $x = 2 \text{ or } 4$ $\frac{d^2x}{dy^2} = \frac{2}{(x-3)^3}$ $x = 2 \Rightarrow \frac{d^2x}{dy^2} < 0 \text{ Local max at } x = 2$ $x = 4 \Rightarrow \frac{d^2x}{dy^2} > 0 \text{ Local min at } x = 4$		OR Correct expression for $\frac{dy}{dx}$ plus x-coordinates of TPs found and nature stated without correct use of first or second derivative test.	With use of the first derivative test or second derivative test to justify the nature of the turning points.

2019 Question 1d.

(d)	$\frac{dy}{dx} = 3x^2 e^x + x^3 e^x$ $= x^2 e^x (3+x)$ $\frac{dy}{dx} < 0$ $\Rightarrow x^2 e^x (3+x) < 0$	Correct derivative.	Correct solution with correct derivative.	
	3+x<0 x<-3			

2019 Question 3c.

(c) $A(x) = x\left(4 - \sqrt{x}\right)$ $= 4x - x^{\frac{3}{2}}$ $A'(x) = 4 - \frac{3}{2}x^{\frac{1}{2}}$ Maximum area when $A'(x) = 0$ $\frac{3}{2}\sqrt{x} = 4$ $\sqrt{x} = \frac{8}{3}$ $x = \frac{64}{9}$ $Area = \frac{64}{9}\left(4 - \frac{8}{3}\right)$ $= \frac{64}{9} \times \frac{4}{3}$ $= \frac{256}{27} \left(=9\frac{13}{27}\right)$ Accept 9.48				
$= 4x - x^{\overline{2}}$ $A'(x) = 4 - \frac{3}{2}x^{\overline{2}}$ Maximum area when $A'(x) = 0$ $\frac{3}{2}\sqrt{x} = 4$ $\sqrt{x} = \frac{8}{3}$ $x = \frac{64}{9}$ Area $= \frac{64}{9}\left(4 - \frac{8}{3}\right)$ $= \frac{64}{9} \times \frac{4}{3}$ $= \frac{256}{27} \left(=9\frac{13}{27}\right)$	(c)		with correct	
Maximum area when $A'(x) = 0$ $\frac{3}{2}\sqrt{x} = 4$ $\sqrt{x} = \frac{8}{3}$ $x = \frac{64}{9}$ Area $= \frac{64}{9}\left(4 - \frac{8}{3}\right)$ $= \frac{64}{9} \times \frac{4}{3}$ $= \frac{256}{27} \left(=9\frac{13}{27}\right)$			derivative.	
$\frac{3}{2}\sqrt{x} = 4$ $\sqrt{x} = \frac{8}{3}$ $x = \frac{64}{9}$ Area = $\frac{64}{9}\left(4 - \frac{8}{3}\right)$ $= \frac{64}{9} \times \frac{4}{3}$ $= \frac{256}{27} \left(=9\frac{13}{27}\right)$		$A'(x) = 4 - \frac{3}{2}x^{\frac{1}{2}}$		
$\sqrt{x} = \frac{8}{3}$ $x = \frac{64}{9}$ Area $= \frac{64}{9} \left(4 - \frac{8}{3}\right)$ $= \frac{64}{9} \times \frac{4}{3}$ $= \frac{256}{27} \left(=9\frac{13}{27}\right)$		Maximum area when $A'(x) = 0$		
$x = \frac{64}{9}$ Area $= \frac{64}{9} \left(4 - \frac{8}{3} \right)$ $= \frac{64}{9} \times \frac{4}{3}$ $= \frac{256}{27} \left(= 9\frac{13}{27} \right)$		$\frac{3}{2}\sqrt{x} = 4$		
Area $= \frac{64}{9} \left(4 - \frac{8}{3} \right)$ $= \frac{64}{9} \times \frac{4}{3}$ $= \frac{256}{27} \left(= 9\frac{13}{27} \right)$		$\sqrt{x} = \frac{8}{3}$		
$= \frac{64}{9} \times \frac{4}{3}$ $= \frac{256}{27} \left(=9\frac{13}{27}\right)$		-		
$=\frac{256}{27}\left(=9\frac{13}{27}\right)$		Area = $\frac{64}{9} \left(4 - \frac{8}{3} \right)$		
		$=\frac{64}{9}\times\frac{4}{3}$		
Accept 9.48		$=\frac{256}{27}$ $\left(=9\frac{13}{27}\right)$		
		Accept 9.48		

2019 Question 3d.

(d)	$a(t) = 2e^{t} - 8e^{-t}$ a(t) = 0 $\Rightarrow 2e^{t} - 8e^{-t} = 0$	Correct derivative.	Correct solution with correct derivative.	
	$2e^{t} = 8e^{-t}$ $e^{2t} = 4$			
	$2t = \ln 4$ $t = \frac{1}{2}\ln 4 \ (= \ln 2 = 0.693)$			

2018 Question 2d.

(d) $ \frac{dy}{dx} = e^{x} (2x^{2} - x - 1) + e^{x} (4x - 1) $ $ = e^{x} (2x^{2} + 3x - 2) $ $ \frac{dy}{dx} = 0 \Rightarrow e^{x} (2x^{2} + 3x - 2) = 0 $ $ \Rightarrow 2x^{2} + 3x - 2 = 0 $ $ \Rightarrow (x + 2)(2x - 1) = 0 $ $ x = -2 \text{ or } x = \frac{1}{2} $ Note $e^{x} = 0$ has no solutions since $e^{x} > 0 \forall x \in \mathbb{R}$	Correct derivative.	Correct solution with correct derivative. Reference to $e^x = 0$ not required.
--	---------------------	---

2018 Question 3c.

(c) Area = $\frac{1}{2} \cdot 2x \cdot (15 - x^2) = 15x - x^3$ $\frac{dA}{dx} = 15 - 3x^2$ Max when $\frac{dA}{dx} = 0$ $3(5 - x^2) = 0$ $x = \pm \sqrt{5}$ y = 10 Area = $\frac{1}{2} \times 2\sqrt{5} \times 10$ $= 10\sqrt{5}$ (= 22.36)	Correct $\frac{dA}{dx}$	Correct solution with correct derivative.	
---	-------------------------	---	--

2018 Question 3e.

(e)	$w^{2} = 5^{2} + \left(5 - \frac{x}{2}\right)^{2}$ $w^{2} = 25 + 25 - 5x + 0.25x^{2}$	e	Correct expression for dL dx	Correct solution with correct derivative.
	$w^{2} = 0.25x^{2} - 5x + 50$ $w = (0.25x^{2} - 5x + 50)^{\frac{1}{2}}$ Length = x + 4w			
	$= x + 4 \left(0.25x^2 - 5x + 50 \right)^{\frac{1}{2}}$ $\frac{dL}{dx} = 1 + 2 \left(0.25x^2 - 5x + 50 \right)^{\frac{-1}{2}} \times \left(0.5x - 5 \right)$			
	$\frac{dx}{dx} = 1 + 2(0.25x^2 - 5x + 50)^2 \times (0.5x - 5)$ $\frac{dL}{dx} = 1 + \frac{x - 10}{(0.25x^2 - 5x + 50)^{\frac{1}{2}}}$			
	For max/min $\frac{dL}{dx} = 0$ $\frac{x-10}{\left(0.25x^2 - 5x + 50\right)^{\frac{1}{2}}} = -1$			
	$ x - 10 = -1 \left(0.25x^2 - 5x + 50 \right)^{\frac{1}{2}} $ $ \left(x - 10 \right)^2 = 0.25x^2 - 5x + 50 $			
	$x^{2} - 20x + 100 = 0.25x^{2} - 5x + 50$ $0.75x^{2} - 15x + 50 = 0$			
	x = 15.77 not applicable x = 4.23 cm			

(e)

$$\frac{dy}{dx} = \frac{(x^2 - 1) \cdot a - (ax - b) \cdot 2x}{(x^2 - 1)^2}$$

$$At x = 3, \ \frac{dy}{dx} = 0 \implies 8a - (3a - b) \times 6 = 0$$

$$-10a + 6b = 0$$

$$5a = 3b$$
Correct
derivative.
Correct solution
with correct
derivative.
Correct
derivative.
Correct
derivative.
Correct
derivative.
Correct
derivative.
Correct
derivative.
Correct solution
with correct
derivative.
Correct solution
on of the two
equations
relating a and b.
Correct solution
with correct
derivative.
Correct solution
with correct
derivative.
Correct solution
on of the two
equations
relating a and b.
Correct solution
with correct
derivative.
Correct solution
with correct solution
with correct solution
with correct solution
on of the two
equations
relating a and b.
Correct solution
with correct solution
with correct solution
with correct solution
with correct solution
on of the two
equations
relating a and b.
Correct solution
with correct solution
on of the two
equations
relating a and b.
Correct solution
with correct solution
with correct solution
on of the two
equations
relating a and b.
Correct solution
with correct solution
with correct solution
with correct solution
on of the two
equations
relating a and b.
Correct solution
with correct solution
with correct solution
with correct solution
with correct solution
on of the two
equations
correct so

NCEA Level 3 Calculus (91578) 2017 — page 2 of 6

The curve passes through (3,1) $\Rightarrow 1 = \frac{3a-b}{8}$ $8 = 3a-b$		
24 = 9a - 3b $= 9a - 5a$ $= 4a$		
a = 4a a = 6 and $b = 10$		

2017 Question 2b.

b)	$P(w) = 96\ln(w+1.25) - 16w - 12$ $\frac{dP}{dw} = \frac{96}{w+1.25} - 16$	Correct solution with correct derivative.	
	Maximum when $\frac{\mathrm{d}P}{\mathrm{d}w} = 0$		
	$\frac{96}{w+1.25} - 16 = 0$		
	96 = 16(w + 1.25)		
	76 = 16w		
	w = 4.75		

2017 Question 2d.

(d)	$d^{2} = (4 - x)^{2} + (\sqrt{x})^{2}$ = 16 - 8x + x^{2} + x = 16 - 7x + x^{2}	Correct expression for $\frac{dd}{dx}$ or $\frac{d(d^2)}{dx}$	Correct solution with correct derivative.	
	Minimum distance $\Rightarrow \frac{d(d^2)}{dx} = 0$			
	$\frac{\mathrm{d}(a^2)}{\mathrm{d}x} = -7 + 2x = 0$			
	$x = 3.5$ $y = \sqrt{x} = \sqrt{3.5}$			
	$y = \sqrt{x} = \sqrt{3.5}$ $P = \left(3.5, \sqrt{3.5}\right)$			

NCEA Level 3 Calculus (91578) 2017 - page 4 of 6

Alternative: d =	$(x^2 - 7x + 16)^{\frac{1}{2}}$		
	$\frac{1}{2}(x^2 - 7x + 16)^{\frac{-1}{2}} (2x - 7)$		
=	$=\frac{2x-7}{2\sqrt{x^2-7x+16}}$		
Minimum when	dx		
	2x - 7 = 0etc		

(e)	Area = $2x\sqrt{r^2 - x^2}$	Correct derivative.	Correct solution presented in a
	$A(x) = 2x(r^2 - x^2)^{\frac{1}{2}}$		correct mathematical
	$A'(x) = 2\left(r^2 - x^2\right)^{\frac{1}{2}} + 2x \cdot \frac{1}{2}\left(r^2 - x^2\right)^{\frac{-1}{2}} \cdot (-2x)$		manner.
	$=2\sqrt{r^2 - x^2} - \frac{2x^2}{\sqrt{r^2 - x^2}}$		
	$A'(x) = 0 \Longrightarrow \sqrt{r^2 - x^2} = \frac{x^2}{\sqrt{r^2 - x^2}}$		
	$r^2 - x^2 = x^2$		
	$2x^2 = r^2$		
	$x^2 = \frac{r^2}{2}$		
	$x = \frac{r}{\sqrt{2}}$		

2016 Question 1e.

; ;	$f(x) = e^{-(x-k)^2}$ $f'(x) = -2(x-k)e^{-(x-k)^2}$ $f''(x) = -2e^{-(x-k)^2} + 4(x-k)^2 e^{-(x-k)^2}$ $= e^{-(x-k)^2} \left[4(x-k)^2 - 2 \right]$ $f''(x) = 0 \Rightarrow 4(x-k)^2 - 2 = 0$ $4(x-k)^2 = 2$ $(x-k)^2 = \frac{1}{2}$ $(x-k) = \frac{\pm 1}{\sqrt{2}}$ $x = k \pm \frac{1}{\sqrt{2}}$	Correct <i>f</i> '(<i>x</i>)	Correct <i>f</i> "(x)	Correct solutions with correct $f'(x)$ and $f''(x)$
--------	---	--------------------------------	-----------------------	--

(e)	$Vol = \frac{1}{3}\pi r^2 h$ h = 6 + s $s^2 + r^2 = 6^2$ $r^2 = 36 - s^2$	$\frac{\text{Correct}}{\frac{\text{d}V}{\text{d}s}}$	Correct solution.
	$\therefore V = \frac{1}{3}\pi (36 - s^{2})(6 + s)$ = $\frac{1}{3}\pi (216 + 36s - 6s^{2} - s^{3})$ $\frac{dV}{ds} = \frac{1}{3}\pi (36 - 12s - 3s^{2})$ Max volume when $\frac{dV}{ds} = 0$ $\Rightarrow 3s^{2} + 12s - 36 = 0$ $s^{2} + 4s - 12 = 0$ (s + 6)(s - 2) = 0 s = -6 or $s = 2s = 2$		

2016 Question 3c.

(c) Area = $A(x) = x(x-6)^2$	Correct expression for A'(x)	Correct solution for maximum area with correct derivative.		
------------------------------	------------------------------------	--	--	--

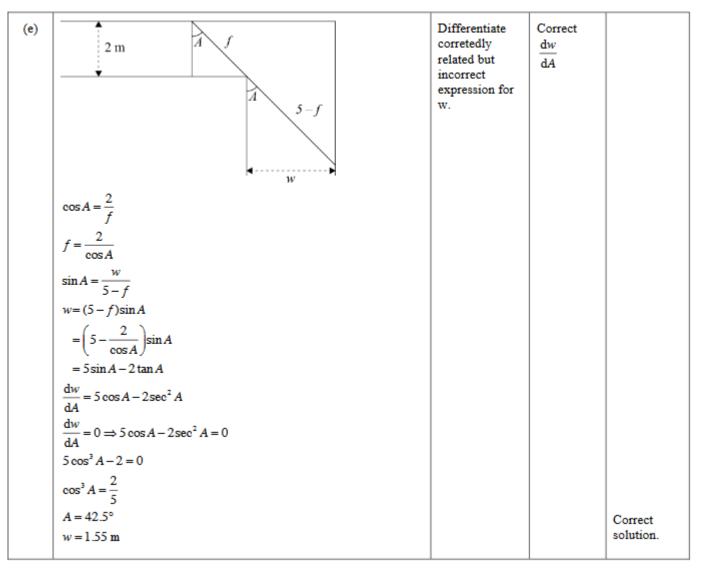
2015 Question 1c.

(c)	$f'(x) = 8 - \frac{2}{(x+1)^2}$ $f'(x) > 0 \Longrightarrow 8 > \frac{2}{(x+1)^2}$ $(x+1)^2 > \frac{1}{4}$ Either $x+1 > \frac{1}{2}$ or $x+1 < \frac{-1}{2}$ $x > \frac{-1}{2}$ or $x < \frac{-3}{2}$	Correct derivative.	Correct solution with correct derivative.	
-----	---	------------------------	---	--

2015 Question 3b.

(b)	$f'(x) = \frac{e^{3x} - x \cdot 3e^{3x}}{(e^{3x})^2}$ $= \frac{1 - 3x}{e^{3x}}$ $f'(x) = 0 \Longrightarrow x = \frac{1}{3}$	Correct solution with correct derivative.			
-----	---	--	--	--	--

2015 Question 3e.



(e)	$h^{2} + r^{2} = 400$ $h = \sqrt{400 - r^{2}}$ $V = \frac{1}{3}\pi r^{2}h = \frac{1}{3}\pi r^{2}\sqrt{400 - r^{2}}$ $\frac{dV}{dr} = \frac{2}{3}\pi r\sqrt{400 - r^{2}} + \frac{1}{3}\pi r^{2} \cdot \frac{1}{2}(400 - r^{2})^{\frac{-1}{2}} - 2r$ $\frac{dV}{dr} = \frac{\frac{2}{3}\pi r(400 - r^{2}) - \frac{1}{3}\pi r^{3}}{\sqrt{400 - r^{2}}}$ At maximum volume: $\frac{dV}{dR} = 0$ $2(400 - r^{2}) = r^{2}$	Correct derivative for an incorrect but relevant expression for V.	A correct expression $\frac{dV}{dr}$.	A correct solution. Units not required.
	$2(400-r^{2})=r^{2}$ $3r^{2} = 800$ r = 16.3 cm			

NCEA Level 3 Calculus (91578) 2014 - page 2 of 7

 $V = 3225 \text{ cm}^{3}$ Alternative working: $r^{2} = 400 - h^{2}$ $V = \frac{1}{3}\pi r^{2}h = \frac{1}{3}\pi (400 - h^{2})h$ $= \frac{\pi}{3} (400h - h^{3})$ $\frac{dV}{dh} = \frac{\pi}{3} (400 - 3h^{2})$ At maximum, $\frac{dV}{dh} = 0$ $400 - 3h^{2} = 0$ $h^{2} = \frac{400}{3}$ $h = \frac{20}{\sqrt{3}} = 11.547 \text{ cm}$ $V = 3225 \text{ cm}^{3}$

2014 Question 2d.

(d) $C = 4v + \frac{1000000}{v}$ Correct value for v with Solution.				
$\begin{bmatrix} \frac{dC}{dv} = 4 - \frac{1000000}{v^2} \\ Minimum when \frac{dC}{dv} = 0 \\ v^2 = 250000 \\ v = 500 \\ C = 4 \times 500 + \frac{1000000}{500} = 4000 \end{bmatrix} = 4000$	solution. Units not	for v with correct	$\frac{1}{dv} = 4 - \frac{1}{v^2}$ Minimum when $\frac{dC}{dv} = 0$ $v^2 = 250000$ $v = 500$ $C = 4 \times 500 + \frac{1000000}{1000000} = 4000$	

2014 Question 3b.

(b)	$y = x + \frac{32}{x^2}$	A correct solution.	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 - \frac{64}{x^3}$		
	Stationary points when $\frac{dy}{dx} = 0$		
	$\Rightarrow x^2 = 64$		
	x=4		

2014 Question 3c.

$=4-\ln x$ $=4-\ln x$ $Increasing \Rightarrow f'(x) > 0$ $4-\ln x > 0$ $\ln x < 4$ $x < e^{4}$ $x < 54.6$ But if $x \le 0$ then ln x is not defined, so $0 < x < 54.6$
--

(e) $ \begin{array}{l} h = 40 - 2r \\ V = \pi r^2 h \\ = \pi r^2 (40 - 2r) \\ = 40\pi r^2 - 2\pi r^3 \\ \frac{dV}{dr} = 80\pi r - 6\pi r^2 \\ \frac{dV}{dr} = 0 \Longrightarrow 80\pi r - 6\pi r^2 = 0 \\ 2\pi r (40 - 3r) = 0 \\ r = \frac{40}{3} \text{ or } 0 \\ r = \frac{40}{3} \text{ cm} \end{array} $	Correct derivative for an incorrect but relevant expression for <i>V</i> .	A correct expression $\frac{dV}{for \ dr}$	A correct solution. Units not required.
--	---	--	--

2013 Question 1c.

(c) $\frac{dy}{dx} = -2xe^{6-x^2}$ $\frac{d^2y}{dx^2} = -2e^{6-x^2}$	$+4x^2e^{6-x^2}$	Correct $\frac{dy}{dx}$	Correct solution with correct first and second derivatives.	
	ion when $\frac{d^2 y}{dx^2} = 0$		± not required, accept positive answer only.	
$4x^2 - 2 = 0$ $x = \pm \frac{1}{\sqrt{2}}$				

2013 Question 2c.

(c) $f'(x) = 1 - e^{x} + \frac{k}{x^{2}}$ $f'(x) = 0 \implies 1 - e^{-1} + k = 0$ $k = e^{-1} - 1$ Or $k = -0.632$	Correct derivative.	Correct value for k and correct derivative.	
--	---------------------	---	--

2013 Question 2e.

$A(\theta) = 64\sin\theta + 64\sin\theta\cos\theta$ OR $A(\theta) = 64\sin\theta + 32\sin 2\theta$ $A'(\theta) = 64\cos\theta + 64\cos^2\theta - 64\sin^2\theta$	Correct derivative.	Correct solution with correct derivatives.
$OR A'(\theta) = 64\cos\theta + 64\cos2\theta$		
$= 64\cos\theta + 64\cos^2\theta - 64(1-\cos^2\theta)$		
$= 64(2\cos^2\theta + \cos\theta - 1)$		
Minimum when $A'(\theta) = 0$		
$2\cos^2\theta + \cos\theta - 1 = 0$		
$(2\cos\theta - 1)(\cos\theta + 1) = 0$		
$\operatorname{Or} \cos \theta = \frac{1}{2} \text{ or } \cos \theta = -1 (\operatorname{NO})$		
$\theta = 60^{\circ} \text{ or } \theta = \frac{\pi}{3}$		

2013 Question 3b.

(b)	$f'(x) = 1 - 16(x - 2)^{-2}$ Turning point when $f'(x) = 0$	Correct solution with correct derivative.	
	$1 = \frac{16}{\left(x - 2\right)^2}$		
	$(x-2)^2 = 16$ x = -2 or x = 6		

2013 Question 3c.

(c)	$f''(x) = 50 - \left(30 \ln 2x + 30x \cdot \frac{1}{x}\right)$ = 20 - 30 ln 2x Maximum when $f'(x) = 0$ 20 = 30 ln 2x $\frac{2}{3} = \ln 2x$ $x = \frac{e^{\frac{2}{3}}}{2} = 0.974$	Correct derivative.	Correct solution with correct derivative.	
-----	---	---------------------	---	--

