

Differentiation Collated Past Papers - Parametric

2022 Question 1d.

(d) A curve is defined parametrically by the equations:

$$x = 2 + 3t$$
 and $y = 3t - \ln(3t - 1)$ where $t > \frac{1}{3}$.

Find the coordinates, (*x*,*y*), of any point(s) on the curve where the tangent to the curve has a gradient of $\frac{1}{2}$.

You must use calculus and show any derivatives that you need to find when solving this problem.

2021 Question 1d.

(d) A curve is defined parametrically by the equations $x = t^2 + 3t$ and $y = t^2 \ln(2t - 3)$, for $t > \frac{3}{2}$.

Find the gradient of the tangent to the curve at the point (10,0).

You must use calculus and show any derivatives that you need to find when solving this problem.

2020 Question 2e.

(e) A curve is defined by the parametric equations $x = \ln(t)$ and $y = 6t^3$ where t > 0.

The point P lies on the curve, and at point P, $\frac{d^2y}{dx^2} = 2$.

Find the exact coordinates of point P.

You must use calculus and show any derivatives that you need to find when solving this problem.

2019 Question 2c.

(c) A curve is defined parametrically by the equations $x = \frac{1}{(5-t)^2}$ and $y = 5t - t^2$.

Find the gradient of the tangent to the curve at the point when t = 2.

You must use calculus and show any derivatives that you need to find when solving this problem.

2019 Question 2e.

(e) If $y = e^u$ and $u = \sin 2x$ show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}^2 y}{\mathrm{d}u^2} \left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)^2 + \frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}^2 u}{\mathrm{d}x^2}$$

You must use calculus and show any derivatives that you need to find when solving this problem.

2018 Question 1e.

(e) A curve is defined by the parametric equations $x = t^3 + 1$ $y = t^2 + 1$

Show that
$$\frac{\frac{d^2 y}{dx^2}}{\left(\frac{dy}{dx}\right)^4}$$
 is a constant

2018 Question 3b.

(b) A curve is defined parametrically by the parametric equations

$$x = 5e^{2t}$$

$$y = 2e^{5t}$$

Find the gradient of the tangent to this curve at the point where t = 0.

You must use calculus and show any derivatives that you need to find when solving this problem.

2017 Question 1d.

(d) A curve is defined parametrically by the equations $x = \sqrt{t+1}$ and $y = \sin 2t$.

Find the gradient of the tangent to the curve at the point when t = 0.

You must use calculus and show any derivatives that you need to find when solving this problem.

2016 Question 1c.

- c) A curve is defined by the parametric equations
 - $x = 2\cos 2t$ and $y = \tan^2 t$.

Find the gradient of the tangent to the curve at the point where $t = \frac{\pi}{4}$.

You must use calculus and show any derivatives that you need to find when solving this problem.

2015 Question 3c.

c) A curve is defined parametrically by the equations $x = 3 \cos t$ and $y = \sin 3t$.

Find the gradient of the normal to the curve at the point where $t = \frac{\pi}{4}$.

You must use calculus and show any derivatives that you need to find when solving this problem.

2014 Question 1c.

(c) If $x = 2\sin t$ and $y = \cos 2t$ show that $\frac{dy}{dx} = -2\sin t$.

2013 Question 1d.

(d) A curve is defined by the parametric equations:

 $x = 5\sin t$ and $y = 3\tan t$

Find the gradient of the normal to the curve at the point where $t = \frac{\pi}{2}$.

Show any derivatives that you need to find when solving this problem.

2013 Question 3d.

d) A curve is defined by the parametric equations:

 $x = t^2 - t$ and $y = t^3 - 3t$

Find the coordinates of the point(s) on the curve for which the normal to the curve is parallel to the *y*-axis.

You must use calculus and clearly show your working, including any derivatives you need to find when solving this problem.

