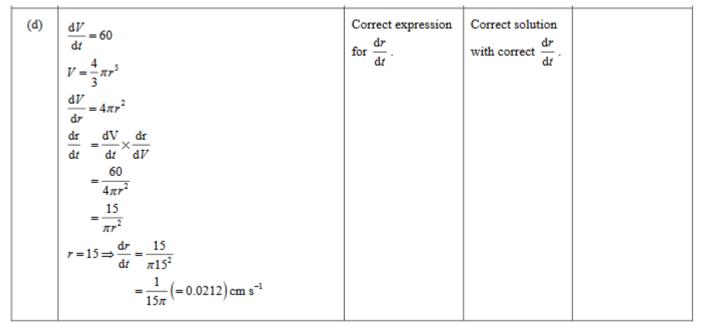


Differentiation Collated Past Answers – Rates of Change

2023 Question 1b.

(b)	$f'(t) = t^{2} (2e^{2t}) + e^{2t} (2t)$ = $2t^{2}e^{2t} + 2te^{2t}$ = $2te^{2t} (t+1)$ $f'(1.5) = 3e^{3} (2.5)$ = $7.5e^{3} = 150.64$	 Correct derivative. AND Correct rate of change. 		
-----	---	---	--	--

2023 Question 2e.


(e)	Helicopter x	• Finds $\frac{dx}{d\theta}$.	 Finds an expression for 	T1 Finds the value for
	400 m		$\frac{dx}{dt}$.	$\frac{dx}{dt} = -31.25$
	, Y			With correct derivatives.
	Car			OR
	Let $x =$ horizontal distance between the helicopter			Finds correct solution but with
	and the car.			one minor error.
	Let $y =$ direct distance between the helicopter and			
	the car.			T2
	Given: $\frac{d\theta}{dt} = 0.002 \ rad \ s - 1$			Finds $\frac{dx}{dt} = -31.25$
	$\tan \theta = \frac{400}{2}$			with correct
	х			derivatives.
	$x = 400 \cot \theta$			AND
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -400\mathrm{cosec}^2\theta$			The speed of the $car = 40.76 \text{ m s}^{-1}$.
	$=\frac{-400}{\sin^2\theta}$			
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}\theta} \times \frac{\mathrm{d}\theta}{\mathrm{d}t}$			
	$dt = d\theta = dt$			
	$=\frac{-400}{\sin^2\theta}\times 0.002$			
	-0.8			
	sin [*] θ			
	When $y = 2500$, $\sin \theta = \frac{400}{2500}$			
	$\theta = 0.1607 \text{ rad}$			
	$\frac{dx}{dt} = \frac{-0.8}{1}$			
	$\frac{dt}{dt} = \frac{1}{\sin^2(0.1607)}$			
	= 31.25			
	When the helicopter is travelling at 72 m s^{-1} ,			
	The speed of the car = $72 - 31.25$			
	$= 40.75 \mathrm{m s^{-1}}$			
	(=146.7 km/hr)			

2022 Question 3c.

(c) $V = \pi \left(\frac{3}{2}h^2 + 3h\right)$ $\frac{dV}{dh} = \pi \left(3h + 3\right)$	Correct expressions for $\frac{dV}{dh}$ and $\frac{dV}{dt}$.	Correct solution with correct derivative for $\frac{dh}{dt}$.	
$\frac{dV}{dt} = 20$ $\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}$ $= \frac{1}{\pi(3h+3)} \times 20$ At $h = 3$, $\frac{dh}{dt} = \frac{20}{12\pi}$ $= \frac{5}{3\pi} = 0.531 \mathrm{cm s^{-1}}$	$\frac{\mathrm{d}V}{\mathrm{d}t}$. can be implied by the expression for $\frac{\mathrm{d}h}{\mathrm{d}t}$.		

2021 Question 2d.

2020 Question 2b.

(b)	$\frac{dV}{dt} = -4250e^{-0.25t} - 1000e^{-0.5t}$ $t = 8 \Longrightarrow \frac{dV}{dt} = -4250e^{-2} - 1000e^{-4}$	Correct solution with correct derivative. Units not	
	= -593.50 Decreasing at \$593.50 per year.	required. Interpretation not required.	

2020 Question 2d.

(d)	$\tan \theta = \frac{h}{500}$ $h = 500 \tan \theta$ $\frac{dh}{d\theta} = 500 \sec^2 \theta = \frac{500}{\cos^2 \theta}$ $t = 10$ $\tan \theta = \frac{480}{500}$	Correct expression for $\frac{dh}{d\theta}$.	Correct expression for $\frac{d\theta}{dt}$.	Correct solution with correct derivatives.
	$\theta = 0.765$ $\frac{d\theta}{dt} = \frac{dh}{dt} \times \frac{d\theta}{dh}$ $= 9.6t \times \frac{\cos^2 \theta}{500}$ $= 96 \times \frac{\cos^2 (0.765)}{500}$			
	$= 96 \times \frac{1}{500}$ = 0.0999 (accept 0.1)			

2019 Question 1e.

(e)	$\frac{dV}{dt} = \frac{dS}{dt} \times \frac{dr}{dS} \times \frac{dV}{dr}$ $S = 4\pi r^{2} \Longrightarrow \frac{dS}{dr} = 8\pi r$ $V = \frac{4}{3}\pi r^{3} \Longrightarrow \frac{dV}{dr} = 4\pi r^{2}$ $\frac{dS}{dt} = 0.4 \text{ when } r = 0.5$ $\frac{dV}{dt} = 0.4 \times \frac{1}{8\pi r} \times 4\pi r^{2}$ $= 0.2r$ When $r = 0.5$, $\frac{dV}{dt} = 0.1 \text{ m}^{3} / s$	Correct expressions for $\frac{dS}{dr}$ and $\frac{dV}{dr}$.	Correct expression for $\frac{dV}{dt}$. Anything equivalent. Line 5 is ok.	Correct solution with correct derivatives. Units not required.
-----	---	--	--	---

2019 Question 2d.

		1		
(d)	$\frac{d\theta}{dt} = 0.01 \text{ rad / s}$ $\frac{dh}{dt} = \frac{d\theta}{dt} \times \frac{dh}{d\theta}$	Correct expression for $\frac{dh}{d\theta}$.	Correct solution with correct derivative, $\frac{dh}{d\theta}$.	
	$\sin\theta = \frac{h}{22}$ $h = 22\sin\theta$		Units not required.	
	$\frac{\mathrm{d}h}{\mathrm{d}\theta} = 22\cos\theta$			
	$\therefore \frac{dh}{dt} = 0.22\cos\theta$			
	$h = 15 \implies \theta = \sin^{-1} \left(\frac{15}{22} \right) = 0.75$			
	$\frac{dh}{dt} = 0.22\cos(0.75) = 0.16 \text{ m s}^{-1}$			

2018 Question 1d.

(d)	$\frac{dL}{dt} = 0.6 \text{ m s}^{-1}$ $L^2 = x^2 + 3^2$ $x = \sqrt{L^2 - 9}$ $\frac{dx}{dL} = \frac{1}{2} \left(L^2 - 9 \right)^{\frac{-1}{2}} \cdot 2L$ $= \frac{L}{\sqrt{L^2 - 9}}$ $\frac{dx}{dt} = \frac{dL}{dt} \times \frac{dx}{dL}$ $= 0.6 \times \frac{L}{\sqrt{L^2 - 9}}$ When $L = 5.4$ $\frac{dx}{dt} = 0.6 \times \frac{5.4}{\sqrt{5.4^2 - 9}}$	Correct expression for $\frac{dx}{dL}$ or $\frac{dL}{dx}$.	Correct solution with correct derivatives.	
	$= 0.722 \text{ m s}^{-1}$			

2018 Question 2e.

(e)	$\frac{dV}{dt} = 150 \text{ cm}^3/\text{s}$ $\frac{dSA}{dt} = \frac{dV}{dt} \times \frac{dr}{dV} \times \frac{dSA}{dr}$ $h = 2.5r$ $V = \frac{1}{3}\pi r^2 h$ $= \frac{5}{6}\pi r^3$ $\frac{dV}{dr} = 2.5\pi r^2$ $SA = \pi r^2$ $\frac{dSA}{dr} = 2\pi r$ $\frac{dSA}{dt} = 150 \times \frac{1}{2.5\pi r^2} \times 2\pi r$ $= \frac{120}{r}$ When $h = 125 \text{ cm}, r = 50 \text{ cm}$ $\frac{dSA}{dt} = \frac{120}{50} = 2.4 \text{ cm}^2/\text{s}$	Correct expression for $\frac{dV}{dr}$ in terms of one variable.	Correct expression for $\frac{dV}{dr}$ and $\frac{dSA}{dr}$ in terms of <i>r</i> , and an attempt to relate two (or more) derivatives.	Correct solution.
-----	--	--	---	-------------------

2017 Question 3d.

(d) Let h = height above Sarah's eye level. $\tan \theta = \frac{h}{30}$ $h = 30 \tan \theta$ $\frac{dh}{d\theta} = 30 \sec^2 \theta$ $\frac{dh}{dt} = 2$ $\frac{d\theta}{dt} = \frac{dh}{dt} \times \frac{d\theta}{dh}$ $= 2 \times \frac{1}{30 \sec^2 \theta}$ $= \frac{\cos^2 \theta}{15}$ At h = 20 $\theta = \tan^{-1} \left(\frac{20}{30}\right) = 0.588$ $\frac{d\theta}{dt} = \frac{(\cos 0.588)^2}{15}$ = 0.046 radians per second	Correct expression for $\frac{dh}{d\theta}$	Correct solution with correct derivatives. Ignore units in the solution.	
--	---	--	--

2016 Question 1b.

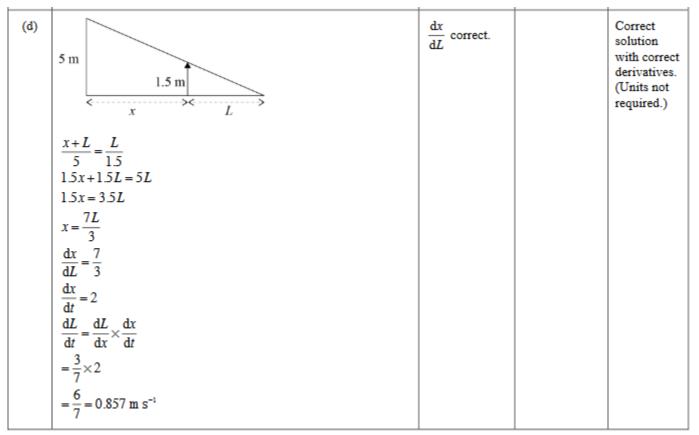
(b) $\frac{dh}{dt} = \frac{3.2\pi}{25} \cos\left(\frac{4\pi}{25}t + \frac{\pi}{2}\right)$ = 0.402 cos $\left(\frac{36\pi}{25} + \frac{\pi}{2}\right)$ = 0.395 metres per hour		
---	--	--

2016 Question 2d.

(d)	$\frac{dV}{dt} = 4800 \text{ cm}^3 \text{ s}^{-1}$ $V = \frac{4}{3}\pi r^3$ $\frac{dV}{dr} = 4\pi r^2$ $\frac{dr}{dt} = \frac{dr}{dV} \times \frac{dV}{dt}$ $= \frac{4800}{4\pi r^2} = \frac{1200}{\pi r^2}$ $V = 288000\pi = \frac{4}{3}\pi r^3$ $288000 = \frac{4}{3}r^3$ $r^3 = 216000$ $r = 60 \text{ cm}$ $\therefore \frac{dr}{dt} = \frac{1200}{\pi \times 60^2} = 0.106 \text{ cm s}^{-1}$	Correct expression for $\frac{dr}{dt}$	Correct solution with correct $\frac{dr}{dt}$ - units not required.		
-----	--	--	--	--	--

2016 Question 3e.

(e)	$\tan \alpha = \frac{15}{d} \qquad \tan(\alpha + \theta) = \frac{20.4}{d}$ $\tan \theta = \tan((\alpha + \theta) - \alpha)$	$\frac{\text{Correct}}{\frac{d(\tan\theta)}{dd}}$	Correct solution – units not required.
	$= \frac{\tan(\alpha + \theta) - \tan \alpha}{1 - \tan(\alpha + \theta) \cdot \tan \alpha}$ 20.4 15	or $\frac{d\theta}{dd}$	
	$=\frac{\frac{d}{d}-\frac{d}{d}}{1+\frac{20.4\times15}{d^2}}$		
	$=\frac{\frac{5.4}{d}}{\frac{d^2+306}{d^2}}$ 5.4d		
	$= \frac{1}{d^2 + 306}$ Max when $\frac{d(\tan \theta)}{dd} = 0$		
	$\frac{(d^2 + 306) \times 5.4 - 5.4d \times 2d}{(d^2 + 306)^2} = 0$		
	$5.4d^2 + 306 \times 5.4 - 10.8d^2 = 0$ $5.4d^2 - 306 \times 5.4 = 0$ $d^2 = 306$ d = 17.5 m		



2015 Question 1e.

(e)	Let $V = \text{volume } (\text{m}^3)$ S = slant height (m) h = height (m) r = radius (m) $\cos 30 = \frac{r}{S}$ $S = \frac{r}{\cos 30}$ $\frac{dS}{dr} = \frac{1}{\cos 30}$ $\tan 30 = \frac{h}{r}$ $h = r \tan 30$	$\frac{\mathrm{d}S}{\mathrm{d}r}\mathrm{or}\frac{\mathrm{d}V}{\mathrm{d}r}$ correct.	Valid statement of the relationship between rates.	Correct solution with correct derivatives.
	$V = \frac{1}{3}\pi r^{2}h$ $= \frac{1}{3}\pi r^{3} \tan 30$ $\frac{dV}{dr} = \pi r^{2} \tan 30$ $\frac{dS}{dt} = \frac{dS}{dr} \times \frac{dr}{dV} \times \frac{dV}{dt}$ $= \frac{1}{\cos 30} \times \frac{1}{\pi r^{2} \tan 30} \times 2$ When $r = 10$ m, $\frac{dS}{dt} = \frac{1}{\cos 30} \times \frac{1}{\pi 10^{2} \times \tan 30} \times 2$ = 0.01273 m/minute			

2015 Question 2d.

2015 Question 2e.

(e)	Depth of water = x h = x + 20 $V = \frac{1}{3}h^3 - \frac{1}{3}20^3$	$\frac{dV}{dx}$ OR	$\frac{dV}{dx}$ AND	Correct solution.
	$= \frac{1}{3}(x+20)^3 - \frac{1}{3}20^3$ $\frac{dV}{dx} = (x+20)^2$	$\frac{\mathrm{d}A}{\mathrm{d}x}$	$\frac{dA}{dx}$	
	$A = \left(x + 20\right)^2$			
	$\frac{dA}{dx} = 2(x+20)$ $\frac{dV}{dt} = 3000$			
	$\frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dV} \times \frac{dV}{dt}$ $= 2(x+20) \times \frac{1}{(x+20)^2} \times 3000$			
	When $x = 15$ $\frac{dA}{dt} = 2 \times 35 \times \frac{1}{35^2} \times 3000 = 171.4 \text{ cm}^2 \text{ min}^{-1}$			
	$dt = 35^2$			

2014 Question 2e.

	(e)	50 cm^{+} 50 cm^{+} $h = y \text{tan } 30 = \frac{h}{y}$ $h = y \text{tan } 30$ $\cos 30 = \frac{y + b}{50}$ $y + b = 50 \cos 30$ $b = 50 \cos 30 - y$ Area = base × height $A = (50 \cos 30 - y)(y \text{tan } 30)$ $= 50 y \sin 30 - y^{2} \text{tan } 30$ $= 25 y - \frac{y^{2}}{\sqrt{3}}$ $\frac{dA}{dy} = 25 - \frac{2y}{\sqrt{3}}$ $At y = 20$ $\frac{dA}{dt} = \frac{dA}{dy} \times \frac{dy}{dt}$ $= \left(25 - \frac{40}{\sqrt{3}}\right) \times 3$ $= 5.72 \text{ cm}^{2} \text{ s}^{-1}$	Correct derivative for an incorrect but relevant expression for <i>A</i> .	A correct expression $\frac{dA}{dy}$ for $\frac{dA}{dy}$	A correct solution. Units not Required.
--	-----	--	---	--	--

2014 Question 3d.

(d)	$\frac{dh}{dt} = 1.5 \text{ m s}^{-1}$ $\tan \theta = \frac{h}{20}$ $h = 20 \tan \theta$ $\frac{dh}{d\theta} = 20 \sec^2 \theta$ $\frac{d\theta}{dt} = \frac{d\theta}{dh} \times \frac{dh}{dt}$ $= \frac{1.5}{20 \sec^2 \theta}$ When $h = 20, \ \theta = \frac{\pi}{4}, \ \sec^2 \theta = 2$ $d\theta = 1.5$	A correct expression for $\frac{dh}{d\theta}$	A correct solution. Units not required.	
	$\frac{d\theta}{dt} = \frac{1.5}{40} = 0.0375 \text{ radians s}^{-1}$			

2013 Question 3e.

(e)	$\frac{dV}{dt} = 300$ $A = 4\pi r^{2} \implies \frac{dA}{dr} = 8\pi r$ $V = \frac{4}{3}\pi r^{3} \implies \frac{dV}{dr} = 4\pi r^{2}$ $\frac{dA}{dt} = \frac{dV}{dt} \cdot \frac{dA}{dr} \cdot \frac{dr}{dV}$ $= \frac{2400\pi r}{4\pi r^{2}}$ $= \frac{600}{r}$ $A = 7500 \implies 4\pi r^{2} = 7500$ $r = \sqrt{\frac{7500}{4\pi}} = 24.43 \text{ cm}$ $\therefore \frac{dA}{dt} = \frac{600}{24.43} = 24.56 \text{ cm}^{2} \text{ s}^{-1}$	Correct expressions for $\frac{dV}{dr}$ and $\frac{dA}{dr}$	Correct expressions for $\frac{dV}{dr}$, $\frac{dA}{dr}$ and $\frac{dA}{dt}$	Correct solution along with correct expressions for $\frac{dV}{dr}$, $\frac{dA}{dr}$ and $\frac{dA}{dt}$
-----	---	---	--	--