

Differentiation Collated Past Papers - Tangents

2023 Question 1c.

(c)
$$\frac{dy}{dx} = -6(x+1)^{-4}$$

$$= \frac{-6}{(x+1)^4}$$
When $x = 1$, $\frac{dy}{dx} = -\frac{3}{8}$ or -0.375

$$\frac{-6}{(x+1)^4} = -\frac{3}{8}$$

$$3(x+1)^4 = 48$$

$$(x+1)^4 = 16$$

$$x+1=\pm 2$$

$$x=1 \text{ or } -3$$

$$\therefore \text{ Second tangent touches the curve when } x=-3$$

• Correct derivative for $\frac{dy}{dx}$.

AND

Correct gradient of $\frac{3}{8}$ found.

• Finds the correct value of x for the second tangent, with evidence of derivative.

2023 Question 1d.

(d)
$$x = 4\cos\theta$$
 and $y = 4\sin\theta$
 $\frac{dx}{d\theta} = -4\sin\theta$ and $\frac{dy}{d\theta} = 4\cos\theta$
 $\frac{dy}{dx} = \frac{4\cos\theta}{-4\sin\theta} = -\frac{x}{y} = -\frac{p}{q}$
OR
Equation of circle: $x^2 + y^2 = 16$
Differentiating implicitly gives
 $2x + 2y\frac{dy}{dx} = 0$
 $\frac{dy}{dx} = -\frac{x}{y}$
At (p,q) , the gradient is $-\frac{p}{q}$
Equation of tangent:
 $y - q = -\frac{p}{q}(x - p)$
 $qy - q^2 = -px + p^2$
 $px + qy = p^2 + q^2$ as required.

Correct derivative for dy/dx.
dy/dx can be expressed in terms of θ or x,y or p,q).
Proof completed, with correct.

2023 Question 2c.

(c)	$f'(x) = \frac{(x^2 + 2x)e^x - e^x(2x + 2)}{(x^2 + 2x)^2}$
	$=\frac{e^{x}((x^2+2x)-(2x+2))}{}$
	$(x^2 + 2x)^2$
	$= \frac{e^x (x^2 - 2)}{(x^2 + 2x)^2}$
	$=\frac{1}{(x^2+2x)^2}$
	$f'(x) = 0 \Rightarrow e^x(x^2 - 2) = 0$
	$e^x \neq 0$
	$x^2 - 2 = 0$
	$x = \pm \sqrt{2} \text{ or } x = \pm 1.41$

 Correct derivative.

 Correct both values of x found, with evidence of derivative.

2023 Question 3c.

(c)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \sqrt{2}\pi \cos\left(\frac{\pi t}{5}\right)$
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \sqrt{2}\pi \sin\left(\frac{\pi t}{5}\right) \Rightarrow$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \tan\left(\frac{\pi t}{5}\right)$
	When $t = 6.25 \Rightarrow$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \tan(1.25\pi) = 1$
	Normal gradient: $m = -1$

• Correct expression for $\frac{dx}{dt}$ AND $\frac{dy}{dt}$. Gradient of the normal found.

2022 Question 1c.

(c)
$$y = \sqrt{x+2}$$

$$\frac{dy}{dx} = \frac{1}{2}(x+2)^{\frac{-1}{2}}$$

$$= \frac{1}{2\sqrt{x+2}}$$
At $x = 0$, $\frac{dy}{dx} = \frac{1}{2\sqrt{2}}$ and $y = \sqrt{2}$
Equation of normal is $y = -2\sqrt{2}x + \sqrt{2}$
 x intercept $(y = 0)$ $0 = -2\sqrt{2}x + \sqrt{2}$

$$x = \frac{1}{2}$$
Coordinate of P is $\left(\frac{1}{2}, 0\right)$

Correct derivative With $\frac{dy}{dx}$ evaluated at x = 0. Correct solution with correct $\frac{dy}{dx}$

with correct $\frac{dy}{dx}$.

Accept $x = \frac{1}{2}$. y = 0 can be implied in the working.

2022 Question 2b.

(b)	$y = (3x^2 - 2)^3$ $\frac{dy}{dx} = 3(3x^2 - 2)^2 (6x)$ At $x = 2$, $\frac{dy}{dx} = 3600$	Correct solution with correct derivative.		
-----	---	---	--	--

2022 Question 2e.

$(y-5)^2 = 16(x-2)$ Method A	Correct $\frac{dy}{dx}$.	Correct x and y values found	T1 Finds equation o
$y - 5 = 4\sqrt{x - 2}$	- L	(6,13)	tangent and both
$y-3=4\sqrt{x-2}$ $y=4\sqrt{x-2}+5$		with correct $\frac{dy}{dx}$.	axis intercepts
		dx	with correct $\frac{dy}{dx}$.
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sqrt{x-2}}$			T2
			Correct solution
$\frac{\mathrm{d}y}{\mathrm{d}x} = 1$			PROBLEM SHEET AND SHEET SHEET
$\frac{2}{\sqrt{x-2}} = 1$			with correct $\frac{dy}{dx}$
$\sqrt{x-2}$			
$\sqrt{x-2}=2$			
x - 2 = 4			
x = 6			
y = 13			
Method B			
$2(y-5)\frac{\mathrm{d}y}{\mathrm{d}x} = 16$			
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8}{y - 5}$			
$\frac{dy}{dx} = 1$			
$\frac{8}{y-5} = 1$			
y = 13			
64 = 16x - 32			
<i>x</i> = 6			
Equation of tangent			
y - 13 = 1(x - 6)			
y = x + 7			
Axis intercepts: (0,7) and (-7, 0)			
Distance RS = $\sqrt{7^2 + 7^2}$			
$=\sqrt{49\times2}$			
$=7\sqrt{2}$			

2021 Question 2c.

(c)	$y = (x^{2} + 3x + 2)\cos 3x$ $\frac{dy}{dx} = (2x + 3)\cos 3x - (x^{2} + 3x + 2)3\sin 3x$	Correct derivative.	Correct solution with correct derivative.	
	Crosses y-axis $\Rightarrow x = 0, y = 2, \frac{dy}{dx} = 3$			
	Normal gradient is $\frac{-1}{3}$ Equation of normal:			
	$y-2=\frac{-1}{3}(x-0)$			
	$y = \frac{-1}{3}x + 2$			
	3y + x - 6 = 0			

2021 Question 2e.

2021 Question 3b.

$\frac{dy}{dx} = \frac{2}{\sqrt{x}} - 1$ with	rrect solution h correct ivative.
---	---

2021 Question 3d.

(d)	$\frac{dy}{dx} = \frac{(4x - k)4 - (4x + k)4}{(4x - k)^2}$ $= \frac{16x - 4k - 16x - 4k}{(4x - k)^2}$ $= \frac{-8k}{(4x - k)^2}$ When $x = 3$, $\frac{dy}{dx} = \frac{-8}{27}$ $\frac{-8k}{(12 - k)^2} = \frac{-8}{27}$ $\frac{k}{(12 - k)^2} = \frac{1}{27}$	Correct derivative.	Correct solution with correct derivative.	
	$(12-k)^{2} 27$ $27k = 144 - 24k + k^{2}$ $k^{2} - 51k + 144 = 0$ $k = 48 \text{ or } k = 3$			

2020 Question 1b.

(b)	$y = 3\sin 2x + \cos 2x$ $\frac{dy}{dx} = 6\cos 2x - 2\sin 2x$ At $x = \frac{\pi}{4}$ $\frac{dy}{dx} = 6\cos \frac{\pi}{2} - 2\sin \frac{\pi}{2} = -2$	Correct gradient with correct derivative.			
-----	--	---	--	--	--

2020 Question 1d.

(d)	$\frac{dy}{dx} = x^2 \cdot -\sin x + 2x \cos x$ At $x = \pi$ $\frac{dy}{dx} = \pi^2 \cdot (-\sin \pi) + 2\pi \cos \pi$ $= -2\pi$	Correct derivative.	Correct proof with correct derivative.	
	At $x = \pi$ $y = -\pi^2$ Tangent equation			
	$y - y_1 = m(x - x_1)$			
	$y + \pi^2 = -2\pi \left(x - \pi \right)$			
	$y + \pi^2 = -2\pi x + 2\pi^2$			
	$y + 2\pi x = \pi^2$			

2020 Question 3b.

(b)	$f(x) = 2x - 2\sqrt{x}$ $f'(x) = 2 - x^{-\frac{1}{2}}$ $\Rightarrow 2 - \frac{1}{\sqrt{x}} = 1$	Correct value of x with correct derivative	
	$\Rightarrow 2 - \frac{1}{\sqrt{x}} = 1$ $\frac{1}{\sqrt{x}} = 1$ $x = 1$		

2020 Question 3c.

(c)	$y = (2x+1)^{\frac{1}{2}}$ $\frac{dy}{dx} = \frac{1}{2}(2x+1)^{\frac{-1}{2}} \times 2$ $= (2x+1)^{\frac{-1}{2}}$ $= \frac{1}{\sqrt{2x+1}}$ At $x = 4$ $\frac{dy}{dx} = \frac{1}{3}$ Normal gradient = -3 $y - 3 = -3(x - 4)$ $y = -3x + 15$ $x-intercept \Rightarrow y = 0$ $x = 5$	Correct derivative.	Correct solution with correct derivative. Must have correct gradient of normal to justify x = 5	
	x = 3			

2019 Question 1c.

(c) Quotient rule $ \frac{dy}{dx} = \frac{\left(1+x^2\right)2e^{2x} - e^{2x}\left(2x\right)}{\left(1+x^2\right)^2} $ OR Product rule $ \frac{dy}{dx} = e^{2x}\left(-2x\right)\left(1+x^2\right)^{-2} + \left(1+x^2\right)^{-1}\left(2e^{2x}\right) $ When $x = 2$, $\frac{dy}{dx} = \frac{6e^4}{25}$ or 13.1	rect derivative. Correct solution with correct derivative.	
---	--	--

2019 Question 3e.

(e) $y = 2\sqrt{36 - x^2}$ $\frac{dy}{dx} = (36 - x^2)^{\frac{-1}{2}} - 2x$ $=\frac{-2x}{\sqrt{36-x^2}}$ Gradient of tangent = $\frac{-2\sqrt{36 - x^2}}{(8 - x)}$ $=\frac{2\sqrt{36-x^2}}{x-8}$ $\therefore \frac{2\sqrt{36-x^2}}{x-8} = \frac{-2x}{\sqrt{36-x^2}}$ $2(36-x^2)=16x-2x^2$ $72 - 2x^2 = 16x - 2x^2$ 72 = 16xx = 4.5Or alternatively: $y = \frac{-2x}{\sqrt{36-x^2}}(x-8)$ $y = \frac{-2x}{\sqrt{36 - x^2}} + \frac{16x}{\sqrt{36 - x^2}}$ Substituting for y: $2\sqrt{36-x^2} = \frac{-2x^2}{\sqrt{36-x^2}} + \frac{16x}{\sqrt{36-x^2}}$ $2(36-x^2)=-2x^2+16x$ $36 - x^2 = -x^2 + 8x$ 36 = 8xx = 4.5

Correct $\frac{dy}{dx}$ of curve.

Correct $\frac{dy}{dx}$ of curve.

AND

Correct gradient of tangent.

OR

Correct equation of tangent involving expression for $\frac{dy}{dx}$.

2018 Question 3d.

(d)	$\frac{dy}{dx} = 2x \cdot \ln x + x^2 \cdot \frac{1}{x}$ $\frac{dy}{dx} = 2x \cdot \ln x + x$ $x = e \Rightarrow \frac{dy}{dx} = 2e \cdot \ln e + e$ $= 3e$ Equation of tangent: $y - y_1 = m(x - x_1)$ $y - e^2 = 3e(x - e)$ $y - e^2 = 3ex - 3e^2$ $y = 3ex - 2e^2$	Correct expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$	Correct solution with correct derivative. Accept any equivalent form.	
	$y = 3ex - 2e^{2}$ $(y = 8.155x - 14.778)$			

2017 Question **1b**.

- 1				
	(b)	$\frac{dy}{dx} = \frac{(x+2) \cdot 2e^{2x} - e^{2x}}{(x+2)^2}$ At $x = 0$ $\frac{dy}{dx} = \frac{2 \times 2 - 1}{4} = \frac{3}{4}$	Correct solution with correct derivative.	

2017 Question 1c.

At $x = 1$ $\frac{dy}{dx} = -2$ \therefore For normal $\frac{dy}{dx} = \frac{1}{2}$ Through $(1, 4)$ \therefore Eqn of normal $y = \frac{1}{2}x + 3.5$ At point P: $\frac{1}{2}x + 3.5 = 0.5(x - 3)^2 + 2$ $x + 7 = (x - 3)^2 + 4$ $x + 7 = x^2 - 6x + 9 + 4$ $x^2 - 7x + 6 = 0$ $(x - 6)(x - 1) = 0$ At point P $x = 6$		
--	--	--

2017 Question 2c.

(c)	$y = \sqrt{x}$ $\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$ At $(4, 2)$ $\frac{dy}{dx} = \frac{1}{2\sqrt{4}} = \frac{1}{4}$ Tangent: $y = \frac{1}{4}x + c$ through $(4,2)$ $2 = 1 + c$ $c = 1$ $y = \frac{1}{4}x + 1$ $y = 0 \implies 0 = \frac{1}{4}x + 1$ $x = -4$ Point Q is $(-4,0)$.	Correct derivative.	Correct solution with correct derivative. Accept x = -4.	
-----	--	------------------------	---	--

2016 Question 1d.

(d)	$y = \frac{1}{4}(x-2)^2$ $\frac{dy}{dx} = \frac{1}{2}(x-2)$	At P $\frac{dy}{dx} = \frac{-1}{2}$	Correct solution with correct derivative.	
	At Q (6, 4) $\frac{dy}{dx} = \frac{1}{2}(6-2) = 2$ \therefore At P $\frac{dy}{dx} = \frac{-1}{2}$			
	$\frac{-1}{2} = \frac{1}{2}(x-2)$ $-1 = x-2$ $x = 1$			

2016 Question 2b.

	(b)	$y = (2x-1)^{\frac{1}{2}}$ $\frac{dy}{dx} = \frac{1}{2}(2x-1)^{-\frac{1}{2}} 2$	Correct solution with correct derivative.	
		$= \frac{1}{\sqrt{2x - 1}}$ At $x = 5$, $\frac{dy}{dx} = \frac{1}{3}$		
- 1				

2016 Question 3b.

(b)	$y = 6x - e^{3x}$ $\frac{dy}{dx} = 6 - 3e^{3x}$	Correct solution with correct derivative.	
	Want $\frac{dy}{dx} = 0$		
	$3e^{3x} = 6$ $e^{3x} = 2$		
	$x = \frac{\ln 2}{3} = 0.231$		

2015 Question 1b.

(b) $\frac{dy}{dx} = 3(4x - 3x^2)^2(4 - 6x)$ $At x = 1, \frac{dy}{dx} = 3 \times 1 \times -2 = -6$ Correct solution with correct derivative.			
	(b)	solution with correct	

2015 Question 1d.

(d)	$f'(x) = \frac{x(x-5) - (x+4)(2x-5)}{x^2(x-5)^2}$ $f'(x) = 0 \Rightarrow x(x-5) - (x+4)(2x-5) = 0$ $x^2 - 5x - (2x^2 + 3x - 20) = 0$ $-x^2 - 8x + 20 = 0$ $x^2 + 8x - 20 = 0$ $(x+10)(x-2) = 0$ $x = -10 \text{ or } +2$	Correct derivative.	Correct solution with correct derivative.	
-----	--	------------------------	---	--

2015 Question 2b.

(b)	$\frac{dy}{dx} = 1 + \frac{16}{x^2}$ At $x = 4$, $\frac{dy}{dx} = 2$ $\therefore \text{ Gradient of normal} = \frac{-1}{2}$	Correct solution with correct derivative.			
-----	--	--	--	--	--

2015 Question 3a.

(a)	$f'(x) = \frac{5}{2x - 3} \times 2 = \frac{10}{2x - 3}$ $\frac{10}{2x - 3} = 4$ $8x - 12 = 10$ $x = 2.75$	Correct solution with correct derivative.	

2014 Question 1b.

(b)	$\frac{dy}{dx} = 2(3x^2 - 5x)(6x - 5)$	A correct solution.	
	At $x = 1$, $\frac{dy}{dx} = 2 \times 2 \times 1 = 4$		
	Gradient of normal $=\frac{1}{4}$ through (1,4)		

2014 Question 1d.

(d)	$y = \frac{4}{e^{2x-2}} + 8x = 4e^{-2x+2} + 8x$ $\frac{dy}{dx} = -8e^{-2x+2} + 8$ Parallel to x-axis $\Rightarrow \frac{dy}{dx} = 0$	A correct expression for $\frac{dy}{dx}$	A correct solution.	
	dx $8e^{-2x+2} = 8$ $e^{-2x+2} = 1$ $-2x+2 = 0$ $x = 1$			

2013 Question 2b.

(b)	$\frac{dy}{dx} = 3\left(x^3 - 2x\right)^2 \cdot \left(3x^2 - 2\right)$ At $x = 1$, $\frac{dy}{dx} = 3 \cdot \left(-1\right)^2 \cdot 1 = 3$ At $x = 1$, $y = -1$ $y + 1 = 3(x - 1)$ $y = 3x - 4$	Correct solution with correct derivative shown.		
		I	I	