

Differentiation Collated Past Questions – Differentiation

2023 Question 1a.

(a) Differentiate $y = \sqrt{3x-2}$. You do not need to simplify your answer.

2023 Question 2a.

(a) Differentiate $f(x) = \frac{x^2}{\cos x}$. You do not need to simplify your answer.

2023 Question 2b.

(b) Find the gradient of the tangent to the curve $y = \cot(2x)$ at the point where $x = \frac{\pi}{12}$. You must use calculus and show any derivatives that you need to find when solving this problem.

2023 Question 3a.

(a) Differentiate $y = \ln(x^2 - x^4 + 1)$. You do not need to simplify your answer.

2022 Question 1a.

(a) Differentiate $y = (\ln x)^2$. You do not need to simplify your answer.

2022 Question 2a.

a) Differentiate $f(x) = (5x - 3)\sin(4x)$. You do not need to simplify your answer.

2022 Question 3a.

(a) Differentiate $y = e^{4\sqrt{x}}$. You do not need to simplify your answer.

2021 Question 1a.

(a) Differentiate $y = e^{3x} \sin 2x$. You do not need to simplify your answer.

2021 Question 2a.

(a) Differentiate $f(x) = (1-x^2)^5$. You do not need to simplify your answer.

2021 Question 3a.

(a) Differentiate $y = \frac{\cot x}{x^2 + 1}$.

You do not need to simplify your answer.

2020 Question 1a.

(a) Differentiate $y = (3x - x^2)^5$. You do not need to simplify your answer.

2020 Question 2a.

a) Differentiate $y = \frac{\tan x}{x^3}$.

You do not need to simplify your answer.

2020 Question 3a.

(a) Differentiate $y = 3\ln(x^2 - 1)$. You do not need to simplify your answer.

2020 Question 3e.

(e) A curve has the equation $y = (3x + 2)e^{-2x}$.

Prove that
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$$
.

You must use calculus and show any derivatives that you need to find when solving this problem.

2019 Question 1a.

(a) Differentiate $y = \sqrt{3x^2 - 1}$. You do not need to simplify your answer.

2019 Question 1b.

b) Find the rate of change of the function $f(t) = 5 \ln(3t - 1)$ when t = 4. You must use calculus and show any derivatives that you need to find when solving this problem.

2019 Question 2a.

(a) Differentiate $y = (2x - 5)^4$. You do not need to simplify your answer.

2019 Question 2b.

(b) Find the gradient of the tangent to the curve $y = \tan 2x$ at the point on the curve where $x = \frac{\pi}{6}$.

You must use calculus and show any derivatives that you need to find when solving this problem.

2019 Question 3a.

(a) Differentiate
$$y = \frac{4}{\sin x}$$
.

You do not need to simplify your answer.

2018 Question 1a.

a) Differentiate
$$y = 2x^3 + \frac{5}{(x^3 + 2)^3}$$

You do not need to simplify your answer.

2018 Question 1b.

(b) If
$$f(x) = 3 \cos 3x$$
, show that $9f(x) + f''(x) = 0$.

2018 Question 1c.

(c) Find the gradient of the curve $y = \ln |\sin^2 x|$ at the point where $x = \frac{\pi}{6}$

You must use calculus and show any derivatives that you need to find when solving this problem.

2018 Question 2a.

a) Differentiate
$$y = 3\sqrt{x} + \csc 5x$$
.

2018 Question 2b.

b) A particle is travelling in a straight line. The distance, in metres, travelled by the particle may be modelled by the function

$$s(t) = \ln(3t^2 + 3t + 1) \qquad t \ge 0$$

where t is time measured in seconds.

Find the velocity of this particle after 2 seconds.

You must use calculus and show any derivatives that you need to find when solving this problem.

2018 Question 3a.

(a) Differentiate
$$y = \frac{e^{2x}}{x^2 + 1}$$
.

You do not need to simplify your answer.

2017 Question 1a.

'a) Differentiate $y = \sqrt{x} + \tan(2x)$.

2017 Question 2a.

(a) Differentiate $y = 2(x^2 - 4x)^5$.

You do not need to simplify your answer.

2017 Question 3a.

(a) Differentiate $y = x \ln(3x - 1)$.

You do not need to simplify your answer.

2017 Question 3b.

(b) Find the gradient of the curve $y = \frac{1}{x} - \frac{1}{x^2}$ at the point $\left(2, \frac{1}{4}\right)$.

You must use calculus and show any derivatives that you need to find when solving this problem.

2017 Question 3e.

(e) For the function $y = e^x \cos kx$:

(i) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$.

ii) Find all the value(s) of k such that the function $y = e^x \cos kx$ satisfies the equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0 \text{ for all values of } x.$$

2016 Question 1a.

(a) Differentiate
$$y = 1 + x - \frac{1}{x} + \frac{1}{x^2}$$
.

2016 Question 2a.

(a) Differentiate $f(x) = x \ln(3x - 1)$.

2016 Question 3a.

(a) Differentiate $f(x) = \sqrt[4]{3x+2}$.

2016 Question 3d.

(d) If
$$y = \frac{e^x}{\sin x}$$
, show that $\frac{dy}{dx} = y(1 - \cot x)$.

2015 Question 1a.

(a) Differentiate y = 6 tan (5x).

2015 Question 2a.

(a) Differentiate $f(x) = \sqrt[5]{x - 3x^2}$.

2015 Question 3d.

(d) The equation of motion of a particle is given by the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\mathbf{k}^2 x$$

where x is the displacement of the particle from the origin at time t, and k is a positive constant.

- (i) Show that $x = A \cos kt + B \sin kt$, where A and B are constants, is a solution of the equation of motion.
- (ii) The particle was initially at the origin and moving with velocity 2k.

Find the values of A and B in the solution $x = A \cos kt + B \sin kt$.

2014 Question 1a.

(a) Differentiate $y = 5\cos(3x)$.

2014 Question 2a.

a) Differentiate $f(x) = \frac{e^{4x}}{2x-1}$.

You do not need to simplify your answer.

2014 Question 2b.

(b) Find the gradient of the curve defined by $y = 8 \ln(3x - 2)$ at the point where x = 2. Show any derivatives that you need to find when solving this problem.

2014 Question 3a.

a) Differentiate $y = (\sqrt[3]{x^2 + 4x})^2$.

2013 Question 1a.

(a) Differentiate $y = \tan(x^2 + 1)$. You do not need to simplify your answer.

2013 Question 1b.

(b) Find the gradient of the tangent to the function $f(x) = \ln(3x - e^x)$ at the point where x = 0.

2013 Question 2a.

a) Differentiate $y = \sqrt[3]{\pi - x^2}$.

You do not need to simplify your answer.

2013 Question 3a.

(a) Differentiate $y = \frac{\sin(2x)}{x^2}$.

You do not need to simplify your answer.