Year 12 Probability Simulations AS 2.13 **Internal 2 Credits** Student Booklet

Contents Introduction Requirements for a description Write-on exercises Extension exercises

Achievement	Achievement with Merit	Achievement with Excellence
Investigate a situation using a simulation.	Investigate a situation using a simulation, with justification.	Investigate a situation using a simulation, with statistical insight.

Achievement	Achievement with Merit	Achievement with Excellence		
Students will show	Students will show evidence of	Students will show evidence of		
evidence of investigating	investigating the situation	investigating the situation using		
the situation using each	using each component of the	each component of the simulation		
component of the	simulation process, linking this	process, integrating statistical and		
simulation process.	to the context, explaining the	contextual knowledge throughout		
This will mean: designing	relevant design considerations	the process.		
the simulation for the	made in the design and	This will mean: designing the		
given situation, identifying	supporting findings.	simulation for the given situation,		
the tools to be used.	This will mean: designing the	identifying the tools to be used,		
defining what is a trial	simulation for the given	defining what is a trial and the		
and the number of trials	situation, identifying the tools	number of trials, determining the		
determining the data	to be used, defining what is a	data recording methods; carrying		
recording methods;	trial and the number of trials	out the simulation and recording		
carrying out the	determining the data	the outcomes: selecting and using		
simulation and recording	recording methods; carrying	appropriate displays and measures;		
the outcomes; selecting	out the simulation and	and communicating findings in a		
and using appropriate	recording the outcomes;	conclusion.		
displays and measures;	selecting and using appropriate	In their report the student should		
and communicating	displays and measures; and	show evidence that they have:		
findings in a conclusion.	communicating findings in a	Designed the simulation for the		
In their report the	conclusion.	• Designed the simulation for the		
student should show	In their report the student	described in detail the tools to		
evidence that they have:	should show evidence that	be used what a trial is the		
 Designed the simulation 	they have:	number of trials and the data		
for the situation given	 Designed the simulation for 	recording method. They have		
They have specified	the situation given They	identified at least two		
the tools to be used	have described in detail the	assumptions in designing their		
what a trial is the	tools to be used what a trial	simulation		
number of trials and	is the number of trials and	Conducted the initial simulation		
the data recording	the data recording method	and recorded the results and		
method	They have identified at least	repeated the simulation		
 Conducted the initial 	one assumption in designing	 Selected and used appropriate 		
simulation and	their simulation.	displays and measures. They		
recorded the outcomes	 Conducted the initial 	have discussed the overall		
Colocted and used	simulation and recorded the	aspects of the distribution or		
• Selected and used	results and repeated the	simulation		
appropriate displays	simulation	Communicated findings clearly		
and measures.	 Selected and used 	and linked the recommendation		
Communicated findings	appropriate displays and	clearly to the results of the		
clearly, making a	measures	both simulations. They have		
conclusion relating to	 Communicated findings 	discussed more than one aspect		
the simulation.	clearly, and linked the	of the recommendation with		
	recommendation to the	respect to the context of the		
	results of the simulations.	simulation in depth.		
	results of the simulations.	simulation in depth.		

Introduction

Simulations are used to solve probability problems when it is difficult to calculate the answer theoretically. You may be asked to calculate

- The long run frequency of an event happening
- The average number of times needed to carry out a 'trial' until a certain condition is met

Simulation Tools

When designing a simulation a tool must be chosen that matches the situation. Possible tools include

- Coins, Dice, Spinners
- Random number tables
- Random numbers on the calculator
- Random number generator on a spreadsheet

Random numbers on the calculator

The RAN# button produces random numbers from 0 to 0.999 999 999 9. It is possible to use the random numbers generated directly (see your teacher) or you can tailor the numbers to the specific problem.

TRCA

Towards achievement in Achievement Standard 2.13: Investigate a situation using a simulation.

To describe a simulation you should cover the following **five** aspects:

Tool:	State which tool you will use. State how the tool will be used to model the situation.
T rial:	State what one trial consists of. State how you will recognise success. State how many trials you will do.
R esults:	Draw up a table to present your results. Use clear headings. Generally you should do at least thirty trials. Include any random numbers you generate.
C alculation:	Carry out the calculation required to solve the problem
Answer:	Answer the question (read it again first)

Write-on exercise 1 The Three Child Family

Problem: What is the probability that a 3-child family will contain exactly two boys and one girl? You may assume that a boy or girl is equally likely to be born.

Tool:

Trial:

Results (for example if a 2 represents a boy; you are to do your own trials):				
Trial	Outcome of trial	Two boys exactly		
1	122	yes		
2	111	no		
3				

Write your results in your book. Calculation:

Answer: Use the results of your simulation to answer these questions: In 250 3-child families how many would you expect to have

a) Exactly 2 boys

b) All girls

We could answer the question "What is the probability that a 3-child family will contain exactly two boys and one girl?" more easily by drawing a probability tree and working out the theoretical probability. From now on we will only do simulations of situations where we can't easily work out the theoretical probability.

Write on Exercise 2 Breakfast Gifts

Problem: A cereal manufacturer includes a gift in each packet of cereal. There are four different gifts. What is the expected number of packets of cereal you must buy to collect all four different gifts? Assumption: the gifts are randomly distributed in the boxes of cereal and each gift is equally likely to be in a box.

Tool:

 ${\sf T}$ rial: One trial consists of

- Generating random numbers on the calculator until at least one of each number 1 to 4 turns up
- The number of packets of cereal required is recorded
- 30 trials will be done

Results: The results will be tabulated as follows (for example):

Trial	Outcome of trial	Number of packets
1	21113214	8
2	334114432	9

Write your table of results in your book.

Calculation: Estimate of the number of cereal packets needed:

average number of packets = total the number of packets for the 30 trials =

30

Exercise 4

A Woolly Task

Farmer McDonald wants to know the average number of lambs produced by his special flock of 720 breeding seasons. Assume that each ewe produces either a single lamb or twin lambs. From records of past breeding seasons Farmer McDonalds knows that the probability of breeding twins is 1/6.

1. Design a model to simulate the lamb production of a ewe for 5 successive breeding seasons.

Describe the steps you will take in sufficient detail so that the farmer can repeat it without your help.

- 2. Carry out simulation by conducting 30 trials and recording your data.
- 3. Use the results of your simulation to find the mean number of lambs produced by an ewe over the four seasons.
- 4. Use the results of your simulation to estimate the number of ewes in this flock that have at least two sets of twins given that they have twins in the first season.
- 5. Farmer McDonald is kind to his sheep, so an ewe which has produced two sets of twins will no longer be used for breeding. Use the results of your simulation to estimate the number of ewes (in the flock of 720) that will still be used for breeding after 3 years.
- 6. What are the limitations of the model you have chosen in predicting the number of lambs produced by the McDonald flock over several years? Give at least two limitations.

Exercise 5

Bob's ties

office

Problem: Bob has 7 different ties. He works a five day week in the

of the Inland Revenue. Design and carry out a simulation to calculate the probability that Bob wears the same tie more than once in a five day week. You may assume that he chooses a tie randomly each morning.

Exercise 6

Oil Strike

Problem: Suppose that the probability that an exploratory oil well will strike oil is 0.2 and that each exploratory well costs 5 million dollars to drill. How many of the next 20 wells established will have cost at least 25 million dollars for their exploration?

Exercise 7

Boys wanted!

Problem: In many countries around the world, couples look to a son to take care of them in their old age. For this reason they keep having children until they give birth to a son. This can lead to over-population. However, suppose a government permits people to continue having children until they have exactly one son. Design and carry out a simulation to answer the following questions:

- a) What is the average number of children per family in these circumstances?
- b) What is the probability that a couple will have three children without having a boy?

Exercise 8

An Infectious Disease

The speed of an infectious disease can be modelled as follows. Suppose that an infectious disease has a one-day infection period, and after that a person is immune. Six people live on an otherwise deserted island. One person catches the disease and randomly visits one other person at random during the next day (his infection period). The process continues, with one visit per day, until an infectious person visits an immune person and the disease dies out.

Design and carry out a simulation to solve the problem. Write down all 5 steps (TTRCA).

Construct at least 30 trials of the simulated epidemic. Use the simulation results to answer the following questions.

- (a) What is the average number of people who get disease in your simulated epidemic?
- (b) What is the probability that more than 3 people will get the disease?
- (c) What is the probability that all six people get the disease?
- (d) What are the limitations of the model you have chosen in predicting the number of people catching the disease? Give at least two limitations.