

Algebra Collated Past Papers - Logarithms - Answers

2023 Question 1c.

(c)	Initially $t = 0$	• t = 0 substituted.	 k correctly found using t = 0. 	Correctly solved.
	$900 = 40 + ke^0$ k = 860			
	$450 = 40 + 860e^{-0.5t}$			
	$860e^{-0.5t} = 410$ $e^{-0.5t} = 0.477$			
	Take log of both sides:			
	$\ln\left(e^{-0.5t}\right) = \ln 0.477$			
	$-0.5t = \frac{\ln 0.477}{\ln e}$			
	t = 1.48 years			

2023 Question 2a.

TWO (a)(i)	$3m+1=2^4$ 3m=15, m=5	Correct solution.		
(ii)	$\log_x 64 = 2$ $x^2 = 64$ $x = \pm 8$ As base cannot be negative, $x = 8$ OR $x^6 = 64^3$ $x = \sqrt[6]{262144}$ $x = \pm 8$ As base cannot be negative, $x = 8$	• Written in an index form. OR $x = 8$ obtained with no consideration of $x = -8$.	Correct answer with justification or evidence of negative value being disregarded.	

2023 Question 2b-d

2023 (Question 2b-d.			
(b)	$\frac{5^{7x+6}}{5^{-2x}} = \left(5^3\right)^p$ $5^{7x+6-(-2x)} = 5^{3p}$ $9x+6=3p$ $p=3x+2$ OR $p = \log_{125} \left(\frac{5^{7x+6}}{25^{-x}}\right)$ $= \log_{125} \left(\frac{5^{7x+6}}{5^{-2x}}\right)$ $= \log_{125} \left(5^{9x+6}\right)$ $= \log_5 \left(\frac{5^{9x+6}}{3}\right)$ $= 3x+2$	• Conversion to either 5^{3p} or 5^{-2x} . OR $x = \frac{p-2}{3}$ OR Log expression up to line 1, which is only one possible log approach.	Correct answer (simplification not required)	
(c)	$6 + \log_b(b^{-3}) + \log_b\left(b^{\frac{1}{2}}\right) = 6 - 3\log(b) + \frac{1}{2}\log_b(b)$ $= 6 - 3 + \frac{1}{2}$ $= 3\frac{1}{2}$	• Combine logs into 1 log term, e.g. log _b (b – 2.5).	Rewriting both log terms bringing down the power.	Correct value, even if the candidate goes direct to the numerical values
(d)	$4^{x} - 10 = 3 \times 4^{x}$ $4^{2x} - 3 \times 4^{x} - 10 = 0$ Let $u = 4^{x}$ $u^{2} - 3u - 10 = 0$ $(u+2)(u-5) = 0$ $4^{x} = -2 \text{ or } 4^{x} = 5$ Negative value not valid so: $\log 4^{x} = \log 5$ $x = \frac{\log 5}{\log 4}$ $x = 1.16$ Accept $\log_{4}(5)$	• Obtains 4 ^{2x} OR 16 ^x OR (4 ^x) ²) OR 3G4 ^x	• Solved for 'u'.	Correct value.

2022 Question 3a-c.

	1	1	ı	1
(ii)	$x \log(2) = \log(2022)$ $x = 10.98$ Accept $\log_2(2022)$	Correct solution.		
(b)	$\log(3a) + 2\log\left(\frac{a}{6}\right)$ $= \log(3a) + \log\left(\left(\frac{a}{6}\right)^2\right)$ $= \log\left(3a\left(\frac{a}{6}\right)^2\right)$ $= \log\left(\frac{a^3}{12}\right)$	Fraction not correctly simplified but otherwise correct.	Correct expression obtained with fraction correctly simplified.	
(c)(i)	$\log_{2}(x-a) - \log_{2}(x+a) = c$ $\log_{2}\frac{x-a}{x+a} = c$ $\frac{x-a}{x+a} = 2^{c}$ $x-a = 2^{c}(x+a) = x2^{c} + a2^{c}$ $x(1-2^{c}) = a + a2^{c} = a(1+2^{c})$ so, $x = a\frac{1+2^{c}}{1-2^{c}}$	Log expressions combined correctly.	Correct exponential equation obtained (line 3).	Correct mathematical statements lead to the required expression.
(ii)	Using the expression from (c) part (i) Firstly, if x is not defined, there will be no solutions, so that means that $1-2^c \neq 0$, so $2^c \neq 1$, and $c \neq 0$. Hence c cannot be zero. Secondly, if $a = 0$, then $x = 0$, but then the logs will be undefined. Hence, a cannot be zero. [Although, in the original equation, if $a = 0$ and $c = 0$, any strictly positive x -value is a solution, but the expression for x is undefined] Thirdly, for the original equation to be defined, both $x - a > 0$ and $x + a > 0$ (accept one or the other, or both).		One constraint identified with reasoning.	Two constraints identified with reasoning.

2021 Question 2c.

(c)(i)	D = 11, so $\left(1 + \frac{R}{100}\right)^{11} = 2$ $\left(1 + \frac{R}{100}\right) = \sqrt[11]{2} = 1.065$ R = 6.5(%)	Sets up equation and uses the 11 th root. OR CAO	Obtains correct solution.	
(c)(ii)	$\left(1 + \frac{R}{100}\right)^{D} = 2$ $\log\left[\left(1 + \frac{R}{100}\right)^{D}\right] = \log 2$ $D\log\left(1 + \frac{R}{100}\right) = \log 2$ $D = \frac{\log(2)}{\log\left(1 + \frac{R}{100}\right)}$	Logs taken of both sides (one of lines 2 or 3 must be shown).	Given expression derived correctly (one of lines 2 or 3 must be shown).	
(c)(iii)	$\frac{72}{R} = \frac{\log(2)}{\log(1 + \frac{R}{100})}$ $72\log(1 + \frac{R}{100}) = R\log(2)$ $\log(\left(1 + \frac{R}{100}\right)^{72}) = \log(2^R)$ $\left(1 + \frac{R}{100}\right)^{72} = 2^R$ $2^R - \left(1 + \frac{R}{100}\right)^{72} = 0$	Sets equations equal.	Processes powers (line 3)	T1: Obtains given equation with incorrect mathematical statements. T2: Obtains final given equation with correct mathematical statements. PL: It may be requ to make T1 = (c)(ii), T2=(c)(iii)

2020 Question 2a-b.

(a)	$\log\left(\frac{9y\times4}{3y}\right) = \log(12)$	Correct solution.		
(b)(i)	$x^2 = 36$ $x = 6$	Correct solution.		
(b)(ii)	$log_5(2x^2) = 4$ $2x^2 = 5^4 = 625$ $x^2 = 312.5$ $x = \pm 17.68$ (4sf) x > 0, so only solution is $x = 17.68$	Combines logs in a valid way.	Finds x.	T1: Correct solution with negative value rejected.

2020 Question 3a.

(a)	$3^{4x} = 30$	Expanded log form.	Correct solution.	
	$4x\log 3 = \log 30$			
	$x = \frac{1}{4} \left(\frac{\log 30}{\log 3} \right) = 0.7740 \text{ (4sf)}$			

2019 Question 3a-d.

(a)	$\log_5(m) = 3$ $\Leftrightarrow 5^3 = m \iff m = 125$	Correct answer.		
(b)	$\log 6 - 2 \log y$ $= \log \left(\frac{6}{y^2} \right)$	Correct answer.		
(c)	$\frac{3^{2n-1} + 3^{2n+1}}{3^{2n} - 3^{2n-4}} = \frac{3^{2n-4} (3^3 + 3^5)}{3^{2n-4} (3^4 - 1)}$ $= \frac{27 + 243}{81 - 1} = \frac{27}{8} \text{ or equivalent.}$	Correct answer only.	Finds common factor of numerator and denominator.	Correct answer.
(d)(i)	$3N_0 = N_0(1.053)^t$ $3 = (1.053)^t$ $\log(3) = t \log(1.053)$ $t = \frac{\log(3)}{\log(1.053)} = 21.27 \text{ weeks}$	Taking log of both sides and t as a factor.	Correct answer.	
(d)(ii)	$\frac{4250}{2500} = (1 + \frac{r}{100})^{10}$ $1 + \frac{r}{100} = \sqrt[10]{1.7} = 1.0545$ Hence $r = 5.45$ and rate of change is 5.45%.	Sets up correct equation.	Finds $1 + \frac{r}{100}$.	Percentage rate of change found.

2018 Question 2a-c.

(a)	$x^5 = 243 \implies x = 3$ Accept $\sqrt[5]{243}$.	Correct solution.		
(b)	$4m - 1 = 3^{2}$ $4m = 10 \implies m = \frac{5}{2} \text{ or equivalent}$	Correct solution.		
(c)	$\frac{3^{4x+1}}{\left(3^{2}\right)^{x}} = \left(3^{3}\right)^{\frac{w}{3}}$ $\frac{3^{4x+1}}{3^{2x}} = 3^{w} \Rightarrow 4x + 1 - 2x = w$ $2x = w - 1$ $x = \frac{w - 1}{2}$	Expressed as powers of 3.	Correct answer.	

2018 Question 2e.

(e)(i)	$25\ 000 = 20\ 000(1.0385)^n$ $\log 1.25 = n \log 1.0385$ $n = \frac{\log 1.25}{\log 1.0385} = 5.91$ Hence 6 years. Whole year required by question.	Taking log of both sides and n as a factor OR $n = 5.91$ years	Correct answer.	
(ii)	$2 = \left(1 + \frac{r}{100}\right)^{12}$ $1 + \frac{r}{100} = \sqrt[3]{2} = 1.0595$ Hence $r = 5.95$ and interest rate is 5.95%.	Sets up correct equation.	Finds $1 + \frac{r}{100}$.	Interest rate found.

2017 Question 2a-c.

TWO (a)	$2^{10} = x$ $x = 1024$	Correct answer.		
(b)	$x^2 = 49$ x = 7 or -7 As base cannot be negative, $x = 7$	Written in index form.	Correct answer with justification.	
(c)	$x = \log_{\sqrt{5}} \frac{1}{125}$ $(\sqrt{5})^x = \frac{1}{125}$ $(5^{\frac{1}{2}})^x = 5^{-3}$ $\frac{x}{2} = 3$ $x = 6$	Written in index form.	Problem solved.	

2017 Question 2d-e.

(d)	Initially the computer is \$4699 so $A = 4699$ $1500 = 4699r^{4.25}$ $r^{4.25} = \frac{1500}{4699} = 0.3192$ $r = 42\sqrt[4]{0.3192}$ r = 0.764 Value after 6 years = 4699×0.764^6 or \$937.26 or consistent with rounding.	Sets up equation with correct value for A.	Value of r found.	Problem solved.
(e)	$\left(\frac{px}{q} - 3\right)\log 81 = \log 243$ $\frac{px}{q} - 3 = \frac{\log 243}{\log 81} = \frac{5}{4}$ $px = \frac{17q}{4}$ $p = \frac{17q}{4x} \text{ or } \frac{4.25q}{x}$	Converts equation to exponent form.	Simplifies logs on right hand side.	Problem solved.

2016 Question 2b-d.

(b)	$\frac{4\log(u^3)}{\log u} = \frac{12\log u}{\log u}$ $= 12$	Power rule for logs in numerator used.	Correct answer.	
(c)	$P = 24990(0.88)^{t}$ $12495 = 24990(0.88)^{t}$ $0.5 = 0.88^{t}$ $t = \frac{\log 0.5}{\log 0.88}$ $= 5.422$ So it takes 5.422 years to halve in value.	CAO or equation set up and error made in solving.	Correct equation solved to find value of <i>t</i> . Accept <i>t</i> = 6 if working shown.	
(d)(i)	$x = 8^{\frac{2}{3}}$ $= 2^2 = 4$	Correct value found.		
(d)(ii)	If $u = \log_8 x$ Then $6u^2 + 2u - 4 = 0$ $u = \frac{2}{3} \text{ or } -1$ Either $\log_8 x = \frac{2}{3}$ "or" $\log_8 x = -1$ $x = 8^{\frac{2}{3}} \text{ or } 8^{-1}$ so $x = 4$ or $\frac{1}{8}$	CAO. OR Quadratic formed	Both values for <i>u</i> found.	Devised a strategy and developed a chain of logical reasoning to solve the problem. Both values of x found.

2016 Question 3b.

(b)	$\log_x 216 = 3$			
	$x^3 = 216$	Correct answer.		
	so $x = 6$ or $\sqrt[3]{216}$			

2016 Question 3d.

(d)	$9^{8n+6} = 27^{n^2-1} \times 3^{1-3n}$ $(3^2)^{8n+6} = 3^{3(n^2-1)}3^{1-3n}$ $3^{16n+12} = 3^{3n^2-3+1-3n}$	Base changed to 3 in all terms.	Quadratic established.	
	$16n+12 = 3n^{2} - 3 + 1 - 3n$ $3n^{2} - 19n - 14 = 0$ $(3n+2)(n-7) = 0$ $n = -\frac{2}{3} \text{ or } 7$			Devised a strategy and developed a chain of logical reasoning to solve the problem. Correct values for <i>n</i> found.

2015 Question 1a-c.

•	Stion 1a c.			
(a)(i)	$2^{x} = 1024$ $x = 10$	Equation solved.		
(a)(ii)	$3w + 1 = 4^2$ $3w = 15$ and $w = 5$	Equation solved.		
(a)(iii)	$x^{2} = 4x + 12$ $x^{2} - 4x - 12 = 0$ $(x - 6)(x + 2) = 0$ $x = 6 \text{ or } -2$ But base must be positive $x = 6 \text{ is the only solution}$	Sets up a quadratic equation.	Solved problem using quadratic, but gives both values.	Gives only valid solution with justification.
(b)	$2x \log a = (x+1)\log b$ $x(2\log a - \log b) = \log b$ $x = \frac{\log b}{2\log a - \log b}$	Takes logs of both sides and multiplies by indices.	Takes logs of both sides and rearranges.	Correctly solved.
(c)(i)	$P = A \times (1.03)^t$ Beginning of 1999, $t = 0$, t = 16, $P = 350000350000 = A(1.03)^{16}A = 218108So price was $218\108\ initially.$	Sets up model correctly.	Answers question in context correctly.	
(c)(ii)	$218100 (1.03)^{t} = 200 000 (1.035)^{t}$ $\frac{218100}{200 000} = \left(\frac{1.035}{1.030}\right)^{t}$ $1.0905 = 1.004854369^{t}$ $t = \frac{\log 1.0905}{\log 1.004854369}$ $t = 17.89$ In 2016.	Set up correct equation.	Solved for t.	Correct year identified.

2014 Question 3a-c.

(a)(i)	$3^x = 81$ $x = 4$	Correctly solved.		
(ii)	$343 = x^3$ $x = 7$	Correctly solved.		
(b)	$\left(\frac{5}{4}\right)^{x} = 15$ $x \log 1.25 = \log 15$ $x = \frac{\log 15}{\log 1.25}$ $x = 12.14$	Expression simplified.	Written in log form.	x found.
(c)(i)	0.8 is the fraction of medication remaining after an hour.	Correct explanation.		
(ii)	$M = 224 \times 0.8^{r-0.5}$ = 224 \times 0.8^{-0.5} = 250.4 mg	Statement with $t = 0$ and attempt to solve.	Correctly solved.	
(iii)	$49.6 = 250.4 \times 0.8^{t}$ $0.8^{t} = \frac{49.6}{250.4}$ $t \log 0.8 = \log \frac{49.6}{250.4}$ $t = 7.25 \text{ hours}$	M = 49.6 recognised and attempt to solve.	Correctly used logs in attempt to solve	Correctly solved.

2013 Question 3a-b.

(a)(i)	$x^3 = 64$ $x = 4$	Correctly solved.		
(ii)	$\frac{2^{x+1}}{2^{3x}} = 32$ $= 2^5$ $2^{x+1-3x} = 2^5$ $1-2x = 5$ $x = -2$	CRO OR Whole equation in powers of two. OR Use of log, with exponents eliminated. eg: (x + 1)log2 = log32 +x log8	Correctly solved.	
(b)(i)	1800×0.6^{n}	Expression correct.		
(ii)	$100 > 1800 \times 0.6^{n}$ $0.6^{n} < \frac{1}{18}$ $n \log 0.6 < \log \frac{1}{18}$ $n > 5.658$ 6 years OR equivalent.	In/Equation rearranged in index form. OR CRO. OR Solved by guess and check. OR 5.7 years with working. OR Consistent use of 0.4^n give $n = 3.15$	Number of years found as a whole number $(n = 6)$ Consistent use of 0.4^n using logs give $n = 4$ years (whole number).	

2013 Question 3a-b.

$x = (mx)^{2}$ $x(m^{2}x - 1) = 0$ therefore either $m^{2}x = 1$	Equation given in index form.	One solution found. $x = \frac{1}{m^2}$	Correctly solved with $x = 0$ disregarded.
$x = \frac{1}{m^2} \text{ if } x \neq 0.$ OR $x = 0$ But log 0 is undefined Therefore $x = \frac{1}{m^2}$		OR Both solutions and $x = 0$ not disregarded.	OR Use of log properties to solve completely. $X = 0$ still needs to be disregarded.

2012 Question 1a-b.

ONE (a)(i)	8	Complete correct solution found.		
(ii)	$x = 5^2$ $= 25$	Complete correct solution found.		
(b) (i)	Log equivalent formed $2250/2000 = 1.035^t$ t = log 1.125/log 1.035 = 3.42 years	Establishing log equation. Problem solved using substitution (at least 2 iterations).	Accept 3.42 or 4 (years) or any other rounding. CRO of 3.42 allowed. Do not accept 3 unless accompanied by algebraic working.	
(ii)	$2000(1.035)^{21} - 2000(1.035)^{18} = 4118.863 - 3714.978$ $= 403.8846$ $= 403.88	Value after 18 or 21 years found.	Correct solution. CRO	
(iii)	The additional amount in the account between Tara's m^{th} and $(m + n)^{th}$ birthday. OR The difference in the amount from the m^{th} year to the $(m + n)^{th}$.			Correct statement.